• Thurgadewi Krishnan Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0003-4597-0118
  • Ng Con Nie Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Rafizah Wan Abdullah Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohamad Awang Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Salida Wan Mansor Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0001-8868-9479




TiO2/ZnO clay beads, sol-gel, photocatalysis, degradation rate, beads recyclability


Catalyst Immobilization methods are important for providing better recovery of catalyst in photocatalytic treatment. The aim is to characterize and evaluate the photocatalytic performance of TiO2/ZnO-coated clay beads. The titanium dioxide/zinc oxide (TiO2/ZnO)-coated clay beads were prepared via the sol-gel process. Various ZnO powder ratios gave different TiO2/ZnO composites sol. Four layers of TiO2/ZnO sol were coated on clay beads and dried in the oven at 100°C for 30 min. The coated clay beads were calcined at 500°C for one hour for every two layers. Characterization of coated clay beads was done using a scanning electron microscope and energy dispersive spectroscopy. The increased surface area on small agglomeration and optimum loading of ZnO (5 g) resulted in the highest degradation efficiency recorded at 86.57%. An effective catalyst immobilization achieved a good recycling performance on clay beads. Degradation rate data were presented by pseudo-first-order kinetics. It was observed that the average degradation rate for TiO2/5 g ZnO is 0.00836 min–1. The actual results in this work can be applied as a guideline for the preparation of TiO2/ZnO-coated clay beads with high photocatalytic performance.  


Jedla, M. R., B. Koneru, A. Franco, D. Rangappa, and P. Banerjee. 2022. Recent Developments in Nanomaterials-based Adsorbents for Water Purification Techniques. Biointerface Res. Appl. Chem. 12: 5821-5835.

DOI: https://doi.org/10.33263/BRIAC125.58215835.

Ambigadevi, J., P. Senthil Kumar, D. V. N. Vo, S. Hari Haran, and T. N. Srinivasa Raghavan. 2021. Recent Developments in Photocatalytic Remediation of Textile Effluent using Semiconductor based Nanostructured Catalyst: A Review. Journal of Environmental Chemical Engineering. 9(1).

DOI: https://doi.org/10.1016/j.jece.2020.104881.

Dorian, A. H. H., and C. C. Sorrell. 2011. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 46: 855-874.

DOI: https://doi.org/10.1007/s10853-010-5113-0.

Hassan, M.bE., J. Chen, G. Liu, D. Zhu, and J. Cai. 2014. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO2 Modified with OMS-2. Materials. 7(12): 8024-8036.

DOI: https://doi.org/10.3390/ma7128024.

Mammadov, G. S., M. A. Ramazanov, A. Kanaev, U. A. Hasanova, and K. A. Huseynov. 2017. Photocatalytic Degradation of Organic Pollutants in Air by Application of Titanium Dioxide Nanoparticles. Chem. Eng. Trans. 60: 241-246.

DOI: https://doi.org/10.3303/CET1760041.

Hachem, C., Bocquillon, F., Zahraa, O., and Bouchy, M. 2001. Decolourization of Textile Industry Wastewater by the Photocatalytic Degradation Process. Dyes and Pigments. 49(2): 117-125.

DOI: https://doi.org/10.1016/S0143-7208(01)00014-6.

Hamed, N. K. A., Ahmad, M. K., Hairom, N. H. H., Faridah, A. B., Mamat, M. H., Mohamed, A., and Shimomura, M. 2022. Photocatalytic Degradation of Methylene Blue by Flowerlike Rutile-phase TiO2 Film Grown via Hydrothermal Method. Journal of Sol-Gel Science and Technology. 102(3): 637-648.

DOI: https://doi.org/10.1007/s10971-021-05691-y.

Kanakaraju, D., S. Ravichandar, and Y. C. Lim. 2017. Combined Effects of Adsorption and Photocatalysis by Hybrid TiO2/ZnO-calcium Alginate Beads for the Removal of Copper. J. Environ. Sci. (China). 55: 214-223.

DOI: https://doi.org/10.1016/j.jes.2016.05.043.

Mansilla, H. D., Villaseñor, J., Maturana, G., Baeza, J., Freer, J., and Durán, N. 1994. ZnO-catalysed Photodegradation of Kraft Black Liquor. Journal of Photochemistry and Photobiology, A: Chemistry. 78(3): 267-273.

DOI: https://doi.org/10.1016/1010-6030(93)03731-U.

Al-Hasani, H., Al-Sabahi, J., Al-Ghafri, B., Al-Hajri, R., and Al-Abri, M. 2022. Effect of Water Quality in Photocatalytic Degradation of Phenol using Zinc Oxide Nanorods under Visible Light Irradiation. Journal of Water Process Engineering. 49.

DOI: https://doi.org/10.1016/j.jwpe.2022.103121.

Dimapilis, E. A. S., C. S. Hsu, R. M. O. Mendoza, and M. C. Lu. 2018. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 28: 47-56.

DOI: https://doi.org/10.1016/j.serj.2017.10.001.

Javed, A. H., N. Shahzad, M. A. Khan, M. Ayub, N. Iqbal, M. Hassan, and M. I. Shahzad. 2021. Effect of ZnO Nanostructures on the Performance of Dye Sensitized Solar Cells. Solar Energy. 230: 492-500.

DOI: https://doi.org/10.1016/j.solener.2021.10.045.

Das, A., P. M. Kumar, M. Bhagavathiachari, and R. G. Nair. 2020. Hierarchical ZnO-TiO2 Nanoheterojunction: A Strategy Driven Approach to Boost the Photocatalytic Performance through the Synergy of Improved Surface Area and Interfacial Charge Transport. Appl. Surf. Sci. 534. DOI: https://doi.org/10.1016/j.apsusc.2020.147321.

Bai, N., X. Liu, Z. Li, X. Ke, K. Zhang, and Q. Wu. 2021. High-efficiency TiO2/ZnO Nanocomposites Photocatalysts by Sol–gel and Hydrothermal Methods. Journal of Sol-Gel Science and Technology. 99(1): 92-100.

DOI: https://doi.org/10.1007/s10971-021-05552-8.

Ong, C. B., L. Y. Ng, and A. W. Mohammad. 2018. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sust. Energ. Rev. 81: 536-551.

DOI: https://doi.org/10.1016/j.rser.2017.08.020.

Shayegan, Z., C. S. Lee, and F. Haghighat. 2018. TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase – A Review. Chem. Eng. J. 334: 2408-2439. DOI: https://doi.org/10.1016/j.cej.2017.09.153.

Kurian, M. 2021. Advanced Oxidation Processes and Nanomaterials. A Review. Cleaner Engineering and Technology. 2.

DOI: https://doi.org/10.1016/j.clet.2021.100090.

Xu, X., J. Wang, J. Tian, X. Wang, J. Dai, and X. Liu. 2011. Hydrothermal and Post-heat Treatments of TiO2/ZnO Composite Powder and Its Photodegradation ehavior on Methyl Orange. Ceram. Int. 37(7): 2201-2206.

DOI: https://doi.org/10.1016/j.ceramint.2011.03.067.

Liao, M. H., C. H. Hsu, and D. H. Chen. 2006. Preparation and Properties of Amorphous Titania-coated Zinc Oxide Nanoparticles. J. Solid State Chem. 179(7): 2020-2026.

DOI: https://doi.org/10.1016/j.jssc.2006.03.042.

Arunachalam, A., S. Dhanapandian, C. Manoharan, and G. Sivakumar. 2015. Physical Properties of Zn Doped TiO2 Thin Films with Spray Pyrolysis Technique and Its Effects in Antibacterial Activity. Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc. 138: 105-112.

DOI: https://doi.org/10.1016/j.saa.2014.11.016.

Eadi, S.B., T. T. Duong, and S. Kim. 2018. TiO2 Coated ZnO Nanorods Growth using NCD Process and their Gas Sensing Properties. Superlattices Microst. 120: 250-256.

DOI: https://doi.org/10.1016/j.spmi.2018.03.021.

Özdokur, K. V., B. B. Çırak, B. Caglar, C. Çırak, S. M. Karadeniz, T. Kılınç, and A. E. Ekinci. 2018. Fabrication of TiO2/ZnO/Pt Nanocomposite Electrode with Enhanced Electrocatalytic Activity for Methanol Oxidation. Vacuum 155: 242-248.

DOI: https://doi.org/10.1016/j.vacuum.2018.06.024.

Deebansok, S., T. Amornsakchai, P. Sae-Ear, P. Siriphannon, and S. M. Smith. 2021. Sphere-like and Flake-like ZnO Immobilized on Pineapple Leaf Fibers as Easy-to-recover Photocatalyst for the Degradation of Congo Red. Journal of Environmental Chemical Engineering. 9(2).

DOI: https://doi.org/10.1016/j.jece.2020.104746.

Pérez-González, M., S. A. Tomás, J. Santoyo-Salazar, and M. Morales-Luna. 2017. Enhanced Photocatalytic Activity of TiO2-ZnO Thin Films Deposited by dc Reactive Magnetron Sputtering. Ceram. Int. 43(12): 8831-8838.

DOI: https://doi.org/10.1016/j.ceramint.2017.04.016.

Hakki, H. K., S. Allahyari, N. Rahemi, and M. Tasbihi. 2019. Surface Properties, Adherence, and Photocatalytic Activity of Sol-gel Dip-coated TiO2–ZnO Films on Glass Plates. Comptes Rendus Chimie. 22(5): 393-405.

DOI: https://doi.org/10.1016/j.crci.2019.05.007.

Ali, M. M., Md. J. Haque, M. H. Kabir, M. A. Kaiyum, and M. S. Rahman. 2021. Nano Synthesis of ZnO–TiO2 Composites by Sol-gel Method and Evaluation of Their Antibacterial, Optical and Photocatalytic Activities. Results in Materials. 11: 100-199.

DOI: https://doi.org/10.1016/j.rinma.2021.100199.

Sethi, D., and R. Sakthivel. 2017. ZnO/TiO2 Composites for Photocatalytic Inactivation of Escherichia coli. J. Photochem. Photobiol. B: Biol. 168: 117-123.

DOI: https://doi.org/10.1016/j.jphotobiol.2017.02.005.

Tseng, T. K., Y. S. Lin, Y. J. Chen, and H. Chu. 2010. A Review of Photocatalysts Prepared by Sol-gel Method for VOCs Removal. Int. J. Mol. Sci. 11: 2336-2361.

DOI: https://doi.org/10.3390/ijms11062336.

Mustapha, S., M. M. Ndamitso, A. S. Abdulkareem, J. O. Tijani, D. T. Shuaib, A. O. Ajala, and A. K. Mohammed. 2020. Application of TiO2 and ZnO Nanoparticles Immobilized on Clay in Wastewater Treatment: A Review. Appl. Water Sci. 10(1).

DOI: https://doi.org/10.1007/s13201-019-1138-y.

Parashar, M., V. K. Shukla, and R. Singh. 2020. Metal Oxides Nanoparticles via Sol–gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 31: 3729-3749.

DOI: https://doi.org/10.1007/s10854-020-02994-8.

Ceretta, M. B., Y. Vieira, E. A. Wolski, E. L. Foletto, and S. Silvestri. 2020. Biological Degradation Coupled to Photocatalysis by ZnO/polypyrrole Composite for the Treatment of Real Textile Wastewater. J. Water Process. Eng. 35: 101230.

DOI: https://doi.org/10.1016/j.jwpe.2020.101230.

Danfá, S., R. C. Martins, M. J. Quina, and J. Gomes. 2021. Supported Tio2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules. 26: 5363.

DOI: https://doi.org/10.3390/molecules26175363.

Tekin, D., H. Kiziltas, and H. Ungan. 2020. Kinetic Evaluation of ZnO/TiO2 Thin Film Photocatalyst in Photocatalytic Degradation of Orange G. J. Mol. Liq. 306.

DOI: https://doi.org/10.1016/j.molliq.2020.112905.

Munguti, K. L., and D. F. Birhanu. 2021. High Photodegradation Performance of ZnO Nanoparticles Supported on Porous Zeolite Na-a: Effects of ZnO Loading. Research Square.

DOI: http://dx.doi.org/10.21203/rs.3.rs-430420/v1.

Anusuya, N., C. Pragathiswaran, and J. V. Mary. 2021. A Potential Catalyst - TiO2/ZnO based Chitosan Gel Beads for the Reduction of Nitro-aromatic Compounds Aggregated Sodium Borohydride and their Antimicrobial Activity. J. Mol. Struct. 1236: 130197.

DOI: https://doi.org/10.1016/j.molstruc.2021.130197.

Elkholy, R. A., E. M. Khalil, A. B. Farag, M. M. Abo El-Fadl, and A. M. El-Aassar. 2020. Photocatalytic Degradation of Organic Pollutants in Wastewater using Different Nanomaterials Immobilized on Polymeric Beads. Desalin. Water Treat. 193: 117-128.

DOI: https://doi.org/10.5004/dwt.2020.25680.

Kaur, T., A. Sraw, R. K. Wanchoo, and A. P. Toor. 2018. Solar Assisted Degradation of Carbendazim in Water Using Clay Beads Immobilised with TiO2 & Fe doped TiO2. Sol. Energy. 162: 45-56.

DOI: https://doi.org/10.1016/j.solener.2017.11.033.

Bel Hadjltaief, H., Ben Zina, M., Galvez, M. E., and Da Costa, P. 2016. Photocatalytic Degradation of Methyl Green Dye in Aqueous Solution over Natural Clay-supported ZnO-TiO2 Catalysts. Journal of Photochemistry and Photobiology A: Chemistry. 315: 25-33.

DOI: https://doi.org/10.1016/j.jphotochem.2015.09.008.

Vaizoğullar, A. I. 2017. TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chemical Engineering Communications. 204(6): 689-697.

DOI: https://doi.org/10.1080/00986445.2017.1306518.

Wang, H., Zhou, P., Wang, J., Wang, Y., Wei, J., Zhan, H., and Zhang, Y. 2018. Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. Journal Wuhan University of Technology, Materials Science Edition. 33(3): 729-735.

DOI: https://doi.org/10.1007/s11595-018-1885-x.

Son, B. T., N. V. Long, and N. T. Nhat Hang. 2021. Fly ash-, foundry Sand-, Clay-, and Pumice-based Metal Oxide Nanocomposites as Green Photocatalysts. RSC Advances. Royal Society of Chemistry. 11: 30805-30826.

DOI: https://doi.org/10.1039/d1ra05647f.

Unuabonah, E. I., C. G. Ugwuja, M. O. Omorogie, A. Adewuyi, and N. A. Oladoja. 2018. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 151: 211-223.

DOI: https://doi.org/10.1016/j.clay.2017.10.005.

Ouda, A. S., and A. M. Rashad. 2021. An Investigation on the Performance of Lightweight Mortar-based Geopolymer Containing High-volume LECA Aggregate against High Temperatures. Environmental Science and Pollution Research.

DOI: https://doi.org/10.1007/s11356-021-17819-2.

Revellame, E. D., D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi. 2020. Adsorption Kinetic Modeling using Pseudo-first Order and Pseudo-second order Rate Laws: A Review. Cleaner Engineering and Technology. 1.

DOI: https://doi.org/10.1016/j.clet.2020.100032.

Hosseini, A., H. Karimi, J. Foroughi, M. M. Sabzehmeidani, and M. Ghaedi. 2021. Heterogeneous Photoelectro-Fenton using ZnO and TiO2 Thin Film as Photocatalyst for Photocatalytic Degradation Malachite Green. Applied Surface Science Advances. 6.

DOI: https://doi.org/10.1016/j.apsadv.2021.100126.

Isik, Z., Z. Bilici, S. K. Adiguzel, H. C. Yatmaz, and N. Dizge. 2019. Entrapment of TiO2 and ZnO Powders in Alginate Beads: Photocatalytic and Reuse Efficiencies for Dye Solutions and Toxicity Effect for DNA Damage. Environ. Technol. Innov. 14.

DOI: https://doi.org/10.1016/j.eti.2019.100358.

Bai, Q., M. Lavenas, L. Vauriot, Q. Le Tréquesser, J. Hao, F. Weill, and M. H. Delville. 2019. Hydrothermal Transformation of Titanate Scrolled Nanosheets to Anatase over a Wide pH Range and Contribution of Triethanolamine and Oleic Acid to Control the Morphology. Inorg. Chem. 58(4): 2588-2598.

DOI: https://doi.org/10.1021/acs.inorgchem.8b03197.

David, M. E., R. M. Ion, R. M. Grigorescu, L. Iancu, and E. R. Andrei. 2020. Nanomaterials used in Conservation and Restoration of Cultural Heritage: An up-to-date Overview. Mater. 13(9).

DOI: https://doi.org/10.3390/ma13092064.

Liao, D. L., C. A. Badour, and B. Q. Liao. 2008. Preparation of Nanosized TiO2/ZnO Composite Catalyst and its Photocatalytic Activity for Degradation of Methyl Orange. J. Photochem. Photobiol. A: Chem. 194(1): 11-19.

DOI: https://doi.org/10.1016/j.jphotochem.2007.07.008.

Jiang, Q., Z. Han, Y. Yuan, C. Cai, J. Li, and Z. Cheng. 2022. Controlled Preparation and Photocatalytic Performance of TiO2/ZnO Phase-mixed Nanotubes-based Nano-spheres. Materials Chemistry and Physics. 279.

DOI: https://doi.org/10.1016/j.matchemphys.2022.125737.

Mousa, H. M., J. F. Alenezi, I. M. A. Mohamed, A. S. Yasin, A. F. M. Hashem, and A. Abdal-hay. 2021. Synthesis of TiO2@ZnO Heterojunction for Dye Photodegradation and Wastewater Treatment. J. Alloys Compd. 886.

DOI: https://doi.org/10.1016/j.jallcom.2021.161169.

Munguti, L., and F. Dejene. 2021. Effects of Zn: Ti Molar Ratios on the Morphological, Optical and Photocatalytic Properties of ZnO-TiO2 Nanocomposites for Application in Dye Removal. Mater. Sci. Semicon. Process. 128.

DOI: https://doi.org/10.1016/j.mssp.2021.105786.

De Jong, T. A., D. N. L. Kok, A. J. H. van der Torren, H. Schopmans, R. M. Tromp, S. J. van der Molen, and J. Jobst. 2020. Quantitative Analysis of Spectroscopic Low Energy Electron Microscopy Data: High-dynamic Range Imaging, Drift Correction and Cluster Analysis. Ultramicroscopy. 213.

DOI: https://doi.org/10.1016/j.ultramic.2019.112913.

Prasannalakshmi, P., and N. Shanmugam. 2017. Fabrication of TiO2/ZnO Nanocomposites for Solar Energy Driven Photocatalysis. Mater. Sci. Semicon. Process. 61: 114-124.

DOI: https://doi.org/10.1016/j.mssp.2017.01.008.

Moradi, S., P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. H. Givianrad. 2016. The Effect of Different Molar Ratios of ZnO on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite. J. Saudi Chem. Soc. 20(4): 373-378.

DOI: https://doi.org/10.1016/j.jscs.2012.08.002.

Siwińska-Stefańska, K., A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, and T. Jesionowski. 2018. TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials. 11(5).

DOI: https://doi.org/10.3390/ma11050841.

Zheng, X., D. Zhang, Y. Gao, Y. Wu, Q. Liu, and X. Zhu. 2019. Synthesis and Characterization of Cubic Ag/TiO2 Nanocomposites for the Photocatalytic Degradation of Methyl Orange in Aqueous Solutions. Inorg. Chem. Commun. 110.

DOI: https://doi.org/10.1016/j.inoche.2019.107589.

Azfar, A. K., M. F. Kasim, I. M. Lokman, H. A. Rafaie, and M. S. Mastuli. 2020. Comparative Study on Photocatalytic Activity of Transition Metals (Ag and Ni)doped ZnO Nanomaterials Synthesized via Sol–gel Method. R. Soc. Open Sci. 7(2).

DOI: https://doi.org/10.1098/rsos.191590.

Do, J. Y., R. K. Chava, K. K. Mandari, N. K. Park, H. J. Ryu, M. W. Seo, and M. Kang. 2018. Selective Methane Production from Visible-light-driven Photocatalytic Carbon Dioxide Reduction using the Surface Plasmon Resonance Effect of Superfine Silver Nanoparticles Anchored on Lithium Titanium Dioxide Nanocubes (Ag@LixTiO2). Appl. Catal. B: Environ. 237: 895-910.

DOI: https://doi.org/10.1016/j.apcatb.2018.06.070.

Deng, W., Q. Dai, Y. Lao, B. Shi, and X. Wang. 2016. Low Temperature Catalytic Combustion of 1,2-dichlorobenzene over CeO2–TiO2 Mixed Oxide Catalysts. Appl. Catal. B: Environ. 181: 848-861.

DOI: https://doi.org/10.1016/j.apcatb.2015.07.053.

Liu, R., H. Ye, X. Xiong, and H. Liu. 2010. Fabrication of TiO2/ZnO Composite Nanofibers by Electrospinning and Their Photocatalytic Property. Mater. Chem. Phys. 121(3): 432-439.

DOI: https://doi.org/10.1016/j.matchemphys.2010.02.002.

El-Naggar, M. E., A. R. Wassel, and K. Shoueir. 2021. Visible-light Driven Photocatalytic Effectiveness for Solid-state synthesis of ZnO/natural clay/TiO2 Nanoarchitectures Towards Complete Decolorization of Methylene Blue from Aqueous Solution. Environ. Nanotechnol. Monit. Manag. 15. DOI: https://doi.org/10.1016/j.enmm.2020.100425.




How to Cite

Krishnan, T. ., Con Nie, N. ., Wan Abdullah, W. R. ., Awang, M. ., & Wan Mansor, W. S. . (2022). TITANIUM DIOXIDE SOL-GEL/ZINC OXIDE POWDER-COATED CLAY BEADS IN PHOTOCATALYTIC REACTOR. Jurnal Teknologi, 85(1), 71-79. https://doi.org/10.11113/jurnalteknologi.v85.18478



Science and Engineering