TITANIUM DIOXIDE SOL-GEL/ZINC OXIDE POWDER-COATED CLAY BEADS IN PHOTOCATALYTIC REACTOR

Authors

  • Thurgadewi Krishnan Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0003-4597-0118
  • Ng Con Nie Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Rafizah Wan Abdullah Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohamad Awang Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Salida Wan Mansor Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia https://orcid.org/0000-0001-8868-9479

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18478

Keywords:

TiO2/ZnO clay beads, sol-gel, photocatalysis, degradation rate, beads recyclability

Abstract

Catalyst Immobilization methods are important for providing better recovery of catalyst in photocatalytic treatment. The aim is to characterize and evaluate the photocatalytic performance of TiO2/ZnO-coated clay beads. The titanium dioxide/zinc oxide (TiO2/ZnO)-coated clay beads were prepared via the sol-gel process. Various ZnO powder ratios gave different TiO2/ZnO composites sol. Four layers of TiO2/ZnO sol were coated on clay beads and dried in the oven at 100°C for 30 min. The coated clay beads were calcined at 500°C for one hour for every two layers. Characterization of coated clay beads was done using a scanning electron microscope and energy dispersive spectroscopy. The increased surface area on small agglomeration and optimum loading of ZnO (5 g) resulted in the highest degradation efficiency recorded at 86.57%. An effective catalyst immobilization achieved a good recycling performance on clay beads. Degradation rate data were presented by pseudo-first-order kinetics. It was observed that the average degradation rate for TiO2/5 g ZnO is 0.00836 min–1. The actual results in this work can be applied as a guideline for the preparation of TiO2/ZnO-coated clay beads with high photocatalytic performance.  

References

Jedla, M. R., B. Koneru, A. Franco, D. Rangappa, and P. Banerjee. 2022. Recent Developments in Nanomaterials-based Adsorbents for Water Purification Techniques. Biointerface Res. Appl. Chem. 12: 5821-5835.

DOI: https://doi.org/10.33263/BRIAC125.58215835.

Ambigadevi, J., P. Senthil Kumar, D. V. N. Vo, S. Hari Haran, and T. N. Srinivasa Raghavan. 2021. Recent Developments in Photocatalytic Remediation of Textile Effluent using Semiconductor based Nanostructured Catalyst: A Review. Journal of Environmental Chemical Engineering. 9(1).

DOI: https://doi.org/10.1016/j.jece.2020.104881.

Dorian, A. H. H., and C. C. Sorrell. 2011. Review of the Anatase to Rutile Phase Transformation. J. Mater. Sci. 46: 855-874.

DOI: https://doi.org/10.1007/s10853-010-5113-0.

Hassan, M.bE., J. Chen, G. Liu, D. Zhu, and J. Cai. 2014. Enhanced Photocatalytic Degradation of Methyl Orange Dye under the Daylight Irradiation over CN-TiO2 Modified with OMS-2. Materials. 7(12): 8024-8036.

DOI: https://doi.org/10.3390/ma7128024.

Mammadov, G. S., M. A. Ramazanov, A. Kanaev, U. A. Hasanova, and K. A. Huseynov. 2017. Photocatalytic Degradation of Organic Pollutants in Air by Application of Titanium Dioxide Nanoparticles. Chem. Eng. Trans. 60: 241-246.

DOI: https://doi.org/10.3303/CET1760041.

Hachem, C., Bocquillon, F., Zahraa, O., and Bouchy, M. 2001. Decolourization of Textile Industry Wastewater by the Photocatalytic Degradation Process. Dyes and Pigments. 49(2): 117-125.

DOI: https://doi.org/10.1016/S0143-7208(01)00014-6.

Hamed, N. K. A., Ahmad, M. K., Hairom, N. H. H., Faridah, A. B., Mamat, M. H., Mohamed, A., and Shimomura, M. 2022. Photocatalytic Degradation of Methylene Blue by Flowerlike Rutile-phase TiO2 Film Grown via Hydrothermal Method. Journal of Sol-Gel Science and Technology. 102(3): 637-648.

DOI: https://doi.org/10.1007/s10971-021-05691-y.

Kanakaraju, D., S. Ravichandar, and Y. C. Lim. 2017. Combined Effects of Adsorption and Photocatalysis by Hybrid TiO2/ZnO-calcium Alginate Beads for the Removal of Copper. J. Environ. Sci. (China). 55: 214-223.

DOI: https://doi.org/10.1016/j.jes.2016.05.043.

Mansilla, H. D., Villaseñor, J., Maturana, G., Baeza, J., Freer, J., and Durán, N. 1994. ZnO-catalysed Photodegradation of Kraft Black Liquor. Journal of Photochemistry and Photobiology, A: Chemistry. 78(3): 267-273.

DOI: https://doi.org/10.1016/1010-6030(93)03731-U.

Al-Hasani, H., Al-Sabahi, J., Al-Ghafri, B., Al-Hajri, R., and Al-Abri, M. 2022. Effect of Water Quality in Photocatalytic Degradation of Phenol using Zinc Oxide Nanorods under Visible Light Irradiation. Journal of Water Process Engineering. 49.

DOI: https://doi.org/10.1016/j.jwpe.2022.103121.

Dimapilis, E. A. S., C. S. Hsu, R. M. O. Mendoza, and M. C. Lu. 2018. Zinc Oxide Nanoparticles for Water Disinfection. Sustain. Environ. Res. 28: 47-56.

DOI: https://doi.org/10.1016/j.serj.2017.10.001.

Javed, A. H., N. Shahzad, M. A. Khan, M. Ayub, N. Iqbal, M. Hassan, and M. I. Shahzad. 2021. Effect of ZnO Nanostructures on the Performance of Dye Sensitized Solar Cells. Solar Energy. 230: 492-500.

DOI: https://doi.org/10.1016/j.solener.2021.10.045.

Das, A., P. M. Kumar, M. Bhagavathiachari, and R. G. Nair. 2020. Hierarchical ZnO-TiO2 Nanoheterojunction: A Strategy Driven Approach to Boost the Photocatalytic Performance through the Synergy of Improved Surface Area and Interfacial Charge Transport. Appl. Surf. Sci. 534. DOI: https://doi.org/10.1016/j.apsusc.2020.147321.

Bai, N., X. Liu, Z. Li, X. Ke, K. Zhang, and Q. Wu. 2021. High-efficiency TiO2/ZnO Nanocomposites Photocatalysts by Sol–gel and Hydrothermal Methods. Journal of Sol-Gel Science and Technology. 99(1): 92-100.

DOI: https://doi.org/10.1007/s10971-021-05552-8.

Ong, C. B., L. Y. Ng, and A. W. Mohammad. 2018. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sust. Energ. Rev. 81: 536-551.

DOI: https://doi.org/10.1016/j.rser.2017.08.020.

Shayegan, Z., C. S. Lee, and F. Haghighat. 2018. TiO2 Photocatalyst for Removal of Volatile Organic Compounds in Gas Phase – A Review. Chem. Eng. J. 334: 2408-2439. DOI: https://doi.org/10.1016/j.cej.2017.09.153.

Kurian, M. 2021. Advanced Oxidation Processes and Nanomaterials. A Review. Cleaner Engineering and Technology. 2.

DOI: https://doi.org/10.1016/j.clet.2021.100090.

Xu, X., J. Wang, J. Tian, X. Wang, J. Dai, and X. Liu. 2011. Hydrothermal and Post-heat Treatments of TiO2/ZnO Composite Powder and Its Photodegradation ehavior on Methyl Orange. Ceram. Int. 37(7): 2201-2206.

DOI: https://doi.org/10.1016/j.ceramint.2011.03.067.

Liao, M. H., C. H. Hsu, and D. H. Chen. 2006. Preparation and Properties of Amorphous Titania-coated Zinc Oxide Nanoparticles. J. Solid State Chem. 179(7): 2020-2026.

DOI: https://doi.org/10.1016/j.jssc.2006.03.042.

Arunachalam, A., S. Dhanapandian, C. Manoharan, and G. Sivakumar. 2015. Physical Properties of Zn Doped TiO2 Thin Films with Spray Pyrolysis Technique and Its Effects in Antibacterial Activity. Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc. 138: 105-112.

DOI: https://doi.org/10.1016/j.saa.2014.11.016.

Eadi, S.B., T. T. Duong, and S. Kim. 2018. TiO2 Coated ZnO Nanorods Growth using NCD Process and their Gas Sensing Properties. Superlattices Microst. 120: 250-256.

DOI: https://doi.org/10.1016/j.spmi.2018.03.021.

Özdokur, K. V., B. B. Çırak, B. Caglar, C. Çırak, S. M. Karadeniz, T. Kılınç, and A. E. Ekinci. 2018. Fabrication of TiO2/ZnO/Pt Nanocomposite Electrode with Enhanced Electrocatalytic Activity for Methanol Oxidation. Vacuum 155: 242-248.

DOI: https://doi.org/10.1016/j.vacuum.2018.06.024.

Deebansok, S., T. Amornsakchai, P. Sae-Ear, P. Siriphannon, and S. M. Smith. 2021. Sphere-like and Flake-like ZnO Immobilized on Pineapple Leaf Fibers as Easy-to-recover Photocatalyst for the Degradation of Congo Red. Journal of Environmental Chemical Engineering. 9(2).

DOI: https://doi.org/10.1016/j.jece.2020.104746.

Pérez-González, M., S. A. Tomás, J. Santoyo-Salazar, and M. Morales-Luna. 2017. Enhanced Photocatalytic Activity of TiO2-ZnO Thin Films Deposited by dc Reactive Magnetron Sputtering. Ceram. Int. 43(12): 8831-8838.

DOI: https://doi.org/10.1016/j.ceramint.2017.04.016.

Hakki, H. K., S. Allahyari, N. Rahemi, and M. Tasbihi. 2019. Surface Properties, Adherence, and Photocatalytic Activity of Sol-gel Dip-coated TiO2–ZnO Films on Glass Plates. Comptes Rendus Chimie. 22(5): 393-405.

DOI: https://doi.org/10.1016/j.crci.2019.05.007.

Ali, M. M., Md. J. Haque, M. H. Kabir, M. A. Kaiyum, and M. S. Rahman. 2021. Nano Synthesis of ZnO–TiO2 Composites by Sol-gel Method and Evaluation of Their Antibacterial, Optical and Photocatalytic Activities. Results in Materials. 11: 100-199.

DOI: https://doi.org/10.1016/j.rinma.2021.100199.

Sethi, D., and R. Sakthivel. 2017. ZnO/TiO2 Composites for Photocatalytic Inactivation of Escherichia coli. J. Photochem. Photobiol. B: Biol. 168: 117-123.

DOI: https://doi.org/10.1016/j.jphotobiol.2017.02.005.

Tseng, T. K., Y. S. Lin, Y. J. Chen, and H. Chu. 2010. A Review of Photocatalysts Prepared by Sol-gel Method for VOCs Removal. Int. J. Mol. Sci. 11: 2336-2361.

DOI: https://doi.org/10.3390/ijms11062336.

Mustapha, S., M. M. Ndamitso, A. S. Abdulkareem, J. O. Tijani, D. T. Shuaib, A. O. Ajala, and A. K. Mohammed. 2020. Application of TiO2 and ZnO Nanoparticles Immobilized on Clay in Wastewater Treatment: A Review. Appl. Water Sci. 10(1).

DOI: https://doi.org/10.1007/s13201-019-1138-y.

Parashar, M., V. K. Shukla, and R. Singh. 2020. Metal Oxides Nanoparticles via Sol–gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci.: Mater. Electron. 31: 3729-3749.

DOI: https://doi.org/10.1007/s10854-020-02994-8.

Ceretta, M. B., Y. Vieira, E. A. Wolski, E. L. Foletto, and S. Silvestri. 2020. Biological Degradation Coupled to Photocatalysis by ZnO/polypyrrole Composite for the Treatment of Real Textile Wastewater. J. Water Process. Eng. 35: 101230.

DOI: https://doi.org/10.1016/j.jwpe.2020.101230.

Danfá, S., R. C. Martins, M. J. Quina, and J. Gomes. 2021. Supported Tio2 in Ceramic Materials for the Photocatalytic Degradation of Contaminants of Emerging Concern in Liquid Effluents: A Review. Molecules. 26: 5363.

DOI: https://doi.org/10.3390/molecules26175363.

Tekin, D., H. Kiziltas, and H. Ungan. 2020. Kinetic Evaluation of ZnO/TiO2 Thin Film Photocatalyst in Photocatalytic Degradation of Orange G. J. Mol. Liq. 306.

DOI: https://doi.org/10.1016/j.molliq.2020.112905.

Munguti, K. L., and D. F. Birhanu. 2021. High Photodegradation Performance of ZnO Nanoparticles Supported on Porous Zeolite Na-a: Effects of ZnO Loading. Research Square.

DOI: http://dx.doi.org/10.21203/rs.3.rs-430420/v1.

Anusuya, N., C. Pragathiswaran, and J. V. Mary. 2021. A Potential Catalyst - TiO2/ZnO based Chitosan Gel Beads for the Reduction of Nitro-aromatic Compounds Aggregated Sodium Borohydride and their Antimicrobial Activity. J. Mol. Struct. 1236: 130197.

DOI: https://doi.org/10.1016/j.molstruc.2021.130197.

Elkholy, R. A., E. M. Khalil, A. B. Farag, M. M. Abo El-Fadl, and A. M. El-Aassar. 2020. Photocatalytic Degradation of Organic Pollutants in Wastewater using Different Nanomaterials Immobilized on Polymeric Beads. Desalin. Water Treat. 193: 117-128.

DOI: https://doi.org/10.5004/dwt.2020.25680.

Kaur, T., A. Sraw, R. K. Wanchoo, and A. P. Toor. 2018. Solar Assisted Degradation of Carbendazim in Water Using Clay Beads Immobilised with TiO2 & Fe doped TiO2. Sol. Energy. 162: 45-56.

DOI: https://doi.org/10.1016/j.solener.2017.11.033.

Bel Hadjltaief, H., Ben Zina, M., Galvez, M. E., and Da Costa, P. 2016. Photocatalytic Degradation of Methyl Green Dye in Aqueous Solution over Natural Clay-supported ZnO-TiO2 Catalysts. Journal of Photochemistry and Photobiology A: Chemistry. 315: 25-33.

DOI: https://doi.org/10.1016/j.jphotochem.2015.09.008.

Vaizoğullar, A. I. 2017. TiO2/ZnO Supported on Sepiolite: Preparation, Structural Characterization, and Photocatalytic Degradation of Flumequine Antibiotic in Aqueous Solution. Chemical Engineering Communications. 204(6): 689-697.

DOI: https://doi.org/10.1080/00986445.2017.1306518.

Wang, H., Zhou, P., Wang, J., Wang, Y., Wei, J., Zhan, H., and Zhang, Y. 2018. Synthesis and Characterization of Rectorite/ZnO/TiO2 Composites and Their Properties of Adsorption and Photocatalysis for the Removal of Methylene Blue Dye. Journal Wuhan University of Technology, Materials Science Edition. 33(3): 729-735.

DOI: https://doi.org/10.1007/s11595-018-1885-x.

Son, B. T., N. V. Long, and N. T. Nhat Hang. 2021. Fly ash-, foundry Sand-, Clay-, and Pumice-based Metal Oxide Nanocomposites as Green Photocatalysts. RSC Advances. Royal Society of Chemistry. 11: 30805-30826.

DOI: https://doi.org/10.1039/d1ra05647f.

Unuabonah, E. I., C. G. Ugwuja, M. O. Omorogie, A. Adewuyi, and N. A. Oladoja. 2018. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 151: 211-223.

DOI: https://doi.org/10.1016/j.clay.2017.10.005.

Ouda, A. S., and A. M. Rashad. 2021. An Investigation on the Performance of Lightweight Mortar-based Geopolymer Containing High-volume LECA Aggregate against High Temperatures. Environmental Science and Pollution Research.

DOI: https://doi.org/10.1007/s11356-021-17819-2.

Revellame, E. D., D. L. Fortela, W. Sharp, R. Hernandez, and M. E. Zappi. 2020. Adsorption Kinetic Modeling using Pseudo-first Order and Pseudo-second order Rate Laws: A Review. Cleaner Engineering and Technology. 1.

DOI: https://doi.org/10.1016/j.clet.2020.100032.

Hosseini, A., H. Karimi, J. Foroughi, M. M. Sabzehmeidani, and M. Ghaedi. 2021. Heterogeneous Photoelectro-Fenton using ZnO and TiO2 Thin Film as Photocatalyst for Photocatalytic Degradation Malachite Green. Applied Surface Science Advances. 6.

DOI: https://doi.org/10.1016/j.apsadv.2021.100126.

Isik, Z., Z. Bilici, S. K. Adiguzel, H. C. Yatmaz, and N. Dizge. 2019. Entrapment of TiO2 and ZnO Powders in Alginate Beads: Photocatalytic and Reuse Efficiencies for Dye Solutions and Toxicity Effect for DNA Damage. Environ. Technol. Innov. 14.

DOI: https://doi.org/10.1016/j.eti.2019.100358.

Bai, Q., M. Lavenas, L. Vauriot, Q. Le Tréquesser, J. Hao, F. Weill, and M. H. Delville. 2019. Hydrothermal Transformation of Titanate Scrolled Nanosheets to Anatase over a Wide pH Range and Contribution of Triethanolamine and Oleic Acid to Control the Morphology. Inorg. Chem. 58(4): 2588-2598.

DOI: https://doi.org/10.1021/acs.inorgchem.8b03197.

David, M. E., R. M. Ion, R. M. Grigorescu, L. Iancu, and E. R. Andrei. 2020. Nanomaterials used in Conservation and Restoration of Cultural Heritage: An up-to-date Overview. Mater. 13(9).

DOI: https://doi.org/10.3390/ma13092064.

Liao, D. L., C. A. Badour, and B. Q. Liao. 2008. Preparation of Nanosized TiO2/ZnO Composite Catalyst and its Photocatalytic Activity for Degradation of Methyl Orange. J. Photochem. Photobiol. A: Chem. 194(1): 11-19.

DOI: https://doi.org/10.1016/j.jphotochem.2007.07.008.

Jiang, Q., Z. Han, Y. Yuan, C. Cai, J. Li, and Z. Cheng. 2022. Controlled Preparation and Photocatalytic Performance of TiO2/ZnO Phase-mixed Nanotubes-based Nano-spheres. Materials Chemistry and Physics. 279.

DOI: https://doi.org/10.1016/j.matchemphys.2022.125737.

Mousa, H. M., J. F. Alenezi, I. M. A. Mohamed, A. S. Yasin, A. F. M. Hashem, and A. Abdal-hay. 2021. Synthesis of TiO2@ZnO Heterojunction for Dye Photodegradation and Wastewater Treatment. J. Alloys Compd. 886.

DOI: https://doi.org/10.1016/j.jallcom.2021.161169.

Munguti, L., and F. Dejene. 2021. Effects of Zn: Ti Molar Ratios on the Morphological, Optical and Photocatalytic Properties of ZnO-TiO2 Nanocomposites for Application in Dye Removal. Mater. Sci. Semicon. Process. 128.

DOI: https://doi.org/10.1016/j.mssp.2021.105786.

De Jong, T. A., D. N. L. Kok, A. J. H. van der Torren, H. Schopmans, R. M. Tromp, S. J. van der Molen, and J. Jobst. 2020. Quantitative Analysis of Spectroscopic Low Energy Electron Microscopy Data: High-dynamic Range Imaging, Drift Correction and Cluster Analysis. Ultramicroscopy. 213.

DOI: https://doi.org/10.1016/j.ultramic.2019.112913.

Prasannalakshmi, P., and N. Shanmugam. 2017. Fabrication of TiO2/ZnO Nanocomposites for Solar Energy Driven Photocatalysis. Mater. Sci. Semicon. Process. 61: 114-124.

DOI: https://doi.org/10.1016/j.mssp.2017.01.008.

Moradi, S., P. Aberoomand-Azar, S. Raeis-Farshid, S. Abedini-Khorrami, and M. H. Givianrad. 2016. The Effect of Different Molar Ratios of ZnO on Characterization and Photocatalytic Activity of TiO2/ZnO Nanocomposite. J. Saudi Chem. Soc. 20(4): 373-378.

DOI: https://doi.org/10.1016/j.jscs.2012.08.002.

Siwińska-Stefańska, K., A. Kubiak, A. Piasecki, J. Goscianska, G. Nowaczyk, S. Jurga, and T. Jesionowski. 2018. TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials. 11(5).

DOI: https://doi.org/10.3390/ma11050841.

Zheng, X., D. Zhang, Y. Gao, Y. Wu, Q. Liu, and X. Zhu. 2019. Synthesis and Characterization of Cubic Ag/TiO2 Nanocomposites for the Photocatalytic Degradation of Methyl Orange in Aqueous Solutions. Inorg. Chem. Commun. 110.

DOI: https://doi.org/10.1016/j.inoche.2019.107589.

Azfar, A. K., M. F. Kasim, I. M. Lokman, H. A. Rafaie, and M. S. Mastuli. 2020. Comparative Study on Photocatalytic Activity of Transition Metals (Ag and Ni)doped ZnO Nanomaterials Synthesized via Sol–gel Method. R. Soc. Open Sci. 7(2).

DOI: https://doi.org/10.1098/rsos.191590.

Do, J. Y., R. K. Chava, K. K. Mandari, N. K. Park, H. J. Ryu, M. W. Seo, and M. Kang. 2018. Selective Methane Production from Visible-light-driven Photocatalytic Carbon Dioxide Reduction using the Surface Plasmon Resonance Effect of Superfine Silver Nanoparticles Anchored on Lithium Titanium Dioxide Nanocubes (Ag@LixTiO2). Appl. Catal. B: Environ. 237: 895-910.

DOI: https://doi.org/10.1016/j.apcatb.2018.06.070.

Deng, W., Q. Dai, Y. Lao, B. Shi, and X. Wang. 2016. Low Temperature Catalytic Combustion of 1,2-dichlorobenzene over CeO2–TiO2 Mixed Oxide Catalysts. Appl. Catal. B: Environ. 181: 848-861.

DOI: https://doi.org/10.1016/j.apcatb.2015.07.053.

Liu, R., H. Ye, X. Xiong, and H. Liu. 2010. Fabrication of TiO2/ZnO Composite Nanofibers by Electrospinning and Their Photocatalytic Property. Mater. Chem. Phys. 121(3): 432-439.

DOI: https://doi.org/10.1016/j.matchemphys.2010.02.002.

El-Naggar, M. E., A. R. Wassel, and K. Shoueir. 2021. Visible-light Driven Photocatalytic Effectiveness for Solid-state synthesis of ZnO/natural clay/TiO2 Nanoarchitectures Towards Complete Decolorization of Methylene Blue from Aqueous Solution. Environ. Nanotechnol. Monit. Manag. 15. DOI: https://doi.org/10.1016/j.enmm.2020.100425.

Downloads

Published

2022-12-02

How to Cite

Krishnan, T. ., Con Nie, N. ., Wan Abdullah, W. R. ., Awang, M. ., & Wan Mansor, W. S. . (2022). TITANIUM DIOXIDE SOL-GEL/ZINC OXIDE POWDER-COATED CLAY BEADS IN PHOTOCATALYTIC REACTOR. Jurnal Teknologi, 85(1), 71-79. https://doi.org/10.11113/jurnalteknologi.v85.18478

Issue

Section

Science and Engineering