EFFECT OF AUTOCLAVING-COOLING ON RESISTANT STARCH CONTENT AND PREBIOTIC PROPERTIES OF HIGH CARBOHYDRATE FOODS: META-ANALYSIS STUDY

Authors

  • Muhammad Isra Department of Biology, Universitas Negeri Gorontalo, Gorontalo, 96119, Indonesia https://orcid.org/0000-0002-6965-3873
  • Dimas Andrianto Department of Biochemistry, IPB University, Bogor, 16680, West Java, Indonesia
  • R. Haryo Bimo Setiarto Research Center for Applied Microbiology, National Research, and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km 46, Cibinong Science Center, Bogor 16911, West Java, Indonesia https://orcid.org/0000-0001-6894-7119

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18515

Keywords:

Autoclaving-cooling, meta-analysis, modified starch, prebiotic properties, resistant starch

Abstract

Autoclaving-cooling is a starch physical modification technique widely used to analyze the increase in resistant starch levels in foodstuffs. However, this technique has a different effect on each high-carbohydrate diet. This study investigates the type of carbohydrate food to increase the levels of resistant starch through the autoclaving-cooling process. This study used 31 articles using the PRISMA method. Data were analyzed with Effect Size Hedges'd (standardized mean difference/SMD) and confidence interval (CI) using OpenMEE software. The results showed that the autoclaving-cooling method had a significant effect on increasing levels of resistant starch and prebiotic properties (SMD 6.633; 95% CI: 5.286 to 7.980; p<0.001). In conclusion, this study confirmed that the autoclaving-cooling method had a significant effect with a 95% confidence level in increasing the levels of resistant starch and prebiotic properties of high-carbohydrate foods.

References

Piecyk, M., and Domain, K. 2021. Effects of Heat–Moisture Treatment Conditions on The Physicochemical Properties and Digestibility of Field Bean Starch (Vicia faba var. minor). International Journal of Biological Macromolecules.182: 425-433.

DOI: https://doi.org/10.1016/j.ijbiomac.2021.04.015.

Su, C., Saleh, A. S. M., Zhang, B., Zhao, K., He, X., Zhou, Q., and Li, W. 2020. Changes in Structural, Physicochemical, and Digestive Properties of Normal and Waxy Wheat Starch During Repeated and Continuous Annealing. Carbohydrate Polymers. 247: 116675.

DOI: https://doi.org/10.1016/j.carbpol.2020.116675.

Zeng, F., Ma, F., Kong, F., Gao, Q., and Yu, S. 2015. Physicochemical Properties and Digestibility of Hydrothermally Treated Waxy Rice Starch. Food Chemistry. 172: 92-98.

DOI:10.1016/j.foodchem.2014.09.020.

Wang, Y., Liu, W., Zhang, X., and Chen, H. 2020. Preparation of VII-type Normal Cornstarch-Lauric Acid Complexes with High Yield and Stability using A Combination Treatment of Debranching and Different Complexation Temperatures. International Journal of Biological Macromolecules. 154(7): 456-465.

DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.142.

Lu, X., Chang, R., Lu, H., Ma, R., Qio, L., and Tian, Y. 2021. Effect of Amino Acids Composing Rice Protein on Rice Starch Digestibility. LWT - Food Science and Technology. 146(7): 1114117.

DOI: https://doi.org/10.1016/j.lwt.2021.111417.

Zailani, M. A., Kamilah, H., Husaini, A., Seruji, A. Z. R. A., and Sarbini, S. R. 2022. Functional and Digestibility Properties of Sago (Metroxylon sagu) Starch Modified by Microwave Heat Treatment. Food Hydrocolloids. 122(1): 107042.

DOI: https://doi.org/10.1016/j.foodhyd.2021.107042.

Sandhu, K. S., Siroha, A. K., and Nehra, S. P. 2020. Effect of Heat Moisture Treatment on Rheological and in Vitro Digestibility Properties of Pearl Millet Starches. Carbohydrate Polymers. 1(12): 100002.

DOI: https://doi.org/10.1016/j.carpta.2020.100002.

Ning, Y., Cui, B., Yuan, C., Zou, Y., Liu, W., and Pan, Y. 2020. Effects of Konjac Glucomannan on the Rheological, Microstructure and Digestibility Properties of Debranched Corn Starch. Food Hydrocolloids. 100(3): 105342.

DOI: https://doi.org/10.1016/j.foodhyd.2019.105342.

Wang, M., Sun, M., Zhang, Y., Chen, Y., Wu, Y., ang Ouyang, J. 2019. Effect of Microwave Irradiation-Retrogradation Treatment on the Digestive and Physicochemical Properties of Starches with Different Crystallinity. Food Chemistry. 298(10): 125015.

DOI: 10.1016/j.foodchem.2019.125015.

Larder, C. E., Baeghbali, V., Pilon, C., Iskandar, M. M., Donnelly, D. J., and Pacheco, S. 2019. Effect of Non-Conventional Drying Methods on in Vitro Starch Digestibility Assessment of Cooked Potato Genotypes. Foods. 382(9): 382.

DOI: 10.3390/foods8090382.

Raza, H., Ameer, K., Ren, X., Liang, Q., Chen, X., Chen, H., and Ma, H. 2021. Physicochemical Properties and Digestion Mechanism of Starch-Linoleic Acid Complex Induced by Multi-Frequency Power Ultrasound. Food Chemistry. 364(12): 130392.

DOI: https://doi.org/10.1016/j.foodchem.2021.130392.

Lu, Z., Belanger, N., Donner, E., and Liu Q. 2018. Debranching of Pea Starch using Pullulanase and Ultrasonication Synergistically to Enhance Slowly Digestible and Resistant Starch. Food Chemistry. 268(12): 533-541.

DOI: https://doi.org/10.1016/j.foodchem.2018.06.115.

Ovando-Martinez, M., Whitney, K., Reuhs, B. L., Doehlert, D. C., and Simsek, S. 2013. Effect of Hydrothermal Treatment on Physicochemical and Digestibility Properties of Oat Starch. Food Research International. 53(6): 17-25.

DOI: http://dx.doi.org/10.1016/j.foodres.2013.02.035.

Lee, K. Y., Lee, S., and Lee, H. G. 2013. Influence of Storage Temperature and Autoclaving Cycles on Slowly Digestible and Resistant Starch (RS)Formation from Partially Debranched Rice Starch. Starch/Starke. 65(7): 7-8.

DOI: 10.1002/star.201200186.

Wallace, C. B., Lajeunesse, J. M., Dietz, G., Dahabreh, J. I., Trikalinos, A. T., Schmid, H. C., and Gurevitch, J. 2017. OpenMEE: Intuitive, Open-Source Software for Meta-Analysis in Ecology and Evolutionary Biology. Methods in Ecology and Evolution. 8(10): 941-947.

DOI: https://doi.org/10.1111/2041-210X.12708.

Higgins, J. P., and Thompson, S. G. 2002. Quantifying Heterogeneity in A Meta-Analysis. Statistics in Medicine. 21(5): 1539-1558.

DOI: 10.1002/sim.1186.

Barua, S., Tudu K., Rakshit, M., Srivastav, P. P. 2021. Characterization and Digestogram Modeling of Modified Elephant Foot Yam (Amorphophallus paeoniifolius) Starch using Ultrasonic Pretreated Autoclaving. Journal of Food Process Engineering. 44(11): e13841.

DOI: https://doi.org/10.1111/jfpe.13841.

Liao, H., and Hung, C. 2015. Chemical Composition and in Vitro Starch Digestibility of Green Banana (Cv. Giant Cavendish) Flour and its Derived Autoclaved/Debranched Powder. LWT - Food Science and Technology. 64(12): 639-644.

DOI: https://doi.org/10.1016/j.lwt.2015.06.058.

Lu, Z., Balanger, N., Donner, E., and Liu Q. 2018. Debranching of Pea Starch using Pullulanase and Ultrasonication Synergistically to Enhance Slowly Digestible and Resistant Starch. Food Chemistry. 268(12): 533-541.

DOI: https://doi.org/10.1016/j.foodchem.2018.06.115.

Zheng, M., Lei, S., Wu, H., Zheng, B., Zhang, Y., and Zeng, H. 2019. Effect of Chitosan on the Digestibility and Molecular Structural Properties of Lotus Seed Starch. Food and Chemical Toxicology. 133(11): 110731.

DOI: https://doi.org/10.1016/j.fct.2019.110731.

Piecyk, M., Druzynska, B., Worobiej, E., Wolosiak, R., and Ostrowska-Ligeza, E. 2013. Effect of Hydrothermal Treatment of Runner Bean (Phaseolus Coccineus) Seeds and Starch Isolation on Starch Digestibility. Food Research International. 50(1): 428-437.

DOI: https://doi.org/10.1016/j.foodres.2012.11.003.

Babu, A. S., and Parimalavalli, R. 2018. Effect of Pullulanase Debranching and Storage Temperatures on Structural Characteristics and Digestibility of Sweet Potato Starch. Journal of the Saudi Society of Agricultural Sciences. 17(4): 208-216.

DOI: https://doi.org/10.1016/j.jssas.2016.04.005.

Ding, Y., Yang, L., Xia, Y., Wu, Y., Zhou, Y., and Wang, H. 2018. Effects of Frying on Starch Structure and Digestibility of Glutinous Rice Cakes. Journal of Cereal Science. 83(9): 196-203.

DOI: https://doi.org/10.1016/j.jcs.2018.08.014.

Zheng, M., Xiao, Y., Yang, S., Liu, H., Liu, M., Yaqoob, S., Xu, X and Liu, J. 2019. Effects of Heat–Moisture, Autoclaving, and Microwave Treatments on Physicochemical Properties of Proso Millet Starch. Food Science & Nutrition. 8(1): 735-743.

DOI: https://doi.org/10.1002/fsn3.1295.

Zhang, Hao., Wang, R., Chen Z., and Qixin Z. 2019. Enzymatically Modified Starch with Low Digestibility Produced from Amylopectin by Sequential Amylosucrase and Pullulanase Treatments. Food Hydrocolloids. 95(10): 195-202.

DOI: https://doi.org/10.1016/j.foodhyd.2019.04.036.

Morales-Sanchez, E., Cabrera-Ramirez, Gaytan-Martinez, M., Mendoza-Zuvillaga, A.L., Velazquez, G., Mendez-Montealvo, M.G., Rodriguez-Garcia, M.E. 2021. Heating-cooling Extrusion Cycles as A Method to Improve the Physicochemical Properties of Extruded Corn Starch. International Journal of Biological Macromolecules. 188(10): 620-627.

DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.189.

Wang, J., Jiang, X., Gou, Z., Zheng, B., and Zhang, Y. 2021. Insights into the Multi-Scale Structural Properties and Digestibility of Lotus Seed Starch-Chlorogenic Acid Complexes Prepared by Microwave Irradiation. Food Chemistry. 361(11): 130171.

DOI: https://doi.org/10.1016/j.foodchem.2021.130171.

Li, Hui., Gui, Y., Li, J., Zhu, Y., Cui, B., and Gou, L. 2020. Modification of Rice Starch Using a Combination of Autoclaving and Triple Enzyme Treatment: Structural, Physicochemical and Digestibility Properties. International Journal of Biological Macromolecules. 144(2): 500-508.

DOI: https://doi.org/10.1016/j.ijbiomac.2019.12.112.

Ye, J., Liu, C., Luo, S., Hu, X., and McClements, D. J. 2018. Modification of the Digestibility of Extruded Rice Starch by Enzyme Treatment (Β-Amylolysis): An in Vitro Study. Food Research International. 111(9): 590-596.

DOI: https://doi.org/10.1016/j.foodres.2018.06.002.

Wang, H., Li, Y., Wang, L., Wang, L., Li, Z., and Qiu, J. 2022. Multi-scale Structure, Rheological and Digestive Properties of Starch Isolated from Highland Barley Kernels Subjected to Different Thermal Treatments. Food Hydrocolloids. 129(8): 107630.

DOI: https://doi.org/10.1016/j.foodhyd.2022.107630.

Barua, S., Rakshit, M., and Srivastav P. P. 2021. Optimization and Digestogram Modeling of Hydrothermally Modified Elephant Foot Yam (Amorphophallus Paeoniifolius) Starch Using Hot Air Oven, Autoclave, and Microwave Treatments. 145(6): 111283.

DOI: https://doi.org/10.1016/j.lwt.2021.111283.

Zheng, Y., Wei, Z., Zhang, R., Deng, Y., Tang, X., Zhang, Y., Liu, G., Liu, L., Wang, J., Liao, N., and Zhang, M. 2020. Optimization of the Autoclave Preparation Process for Improving Resistant Starch Content in Rice Grains. Food Science & Nutrition. 8(5): 2383-2394.

DOI: https://doi.org/10.1002/fsn3.1528.

Yang, Q., Liu, L., Li, X., Li, J., Zhang, W., Shi, M., and Feng, B. 2021. Physicochemical Characteristics of Resistant Starch Prepared from Job’s Tears Starch using Autoclaving–cooling Treatment. CyTA - Journal of Food. 19(3): 316-325.

DOI: https://doi.org/10.1080/19476337.2021.1897688.

Cheng, K., Chen, S., and Yeh, A. 2019. Physicochemical Properties and In Vitro Digestibility of Rice After Parboiling with Heat Moisture Treatment. Journal of Cereal Science. 85(1): 98-104.

DOI: https://doi.org/10.1016/j.jcs.2018.11.016.

Rosida, Harijono, Estiasih, T., and Sriwahyuni, E. 2015. Physicochemical Properties and Starch Digestibility of Autoclaved-Cooled Water Yam (Dioscorea alata L.) Flour. International Journal of Food Properties. 19(4): 032014.

DOI: https://doi.org/10.1080/10942912.2015.1105818.

Agama-Acevedo, E., Bello-Perez, L. A., Lim, J., Lee, B., and Hamaker, B. R. 2018. Pregelatinized Starches Enriched in Slowly Digestible and Resistant Fractions. LWT - Food Science and Technology. 97(11): 187-192.

DOI: https://doi.org/10.1016/j.lwt.2018.06.007.

Peng, Y., Yao, T., Xu, Q., and Janaswamy, S. 2022. Preparation and Characterization of Corn Flours with Variable Starch Digestion. Food Chemistry. 366(1): 130609.

DOI: https://doi.org/10.1016/j.foodchem.2021.130609.

Li, X., Zhang, X., Yang, W., Gou, L., Huang, L., Li, Xia., and Gao, W. 2021. Preparation and Characterization of Native and Autoclaving-Cooling Treated Pinellia Ternate Starch and its Impact on Gut Microbiota. International Journal of Biological Macromolecules. 182(7): 1351-1361.

DOI: https://doi.org/10.1016/j.ijbiomac.2021.05.077.

Ashwar, B. A., Gani, A., Wani, I. A., Shah, A., Masoodi, F. A., and Saxena, D. C. 2016. Production of Resistant Starch from Rice by Dual Autoclaving-Retrogradation Treatment: Invitro Digestibility, Thermal and Structural Characterization. Food Hydrocolloids. 56(5): 108-117.

DOI: https://doi.org/10.1016/j.foodhyd.2015.12.004.

Zhang, Z., Zhang, M., Zhang B., Wang, Y., and Zhao, W. 2022. Radio Frequency Energy Regulates the Multi-Scale Structure, Digestive and Physicochemical Properties of Rice Starch. Food Bioscience. 47(6): 101616.

DOI: https://doi.org/10.1016/j.fbio.2022.101616.

Soler, Adrian., Velazquez, G., Velazquez-Castillo, R., Morales-Sanchez, E., Osorio-Diaz, P., and Mendez-Montealvo, G. 2020. Retrogradation of Autoclaved Corn Starches: Effect of Water Content on the Resistant Starch Formation and Structure. Carbohydrate Research. 497(11): 108137.

DOI: https://doi.org/10.1016/j.carres.2020.108137.

Cui, W., Ma, Z., Li, X., and Hu, X. 2021. Structural Rearrangement of Native and Processed Pea Starches Following Simulated Digestion in Vitro and Fermentation Characteristics of Their Resistant Starch Residues using Human Fecal Inoculum. International Journal of Biological Macromolecules. 172(3): 490-502.

DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.092.

Shaikh, F., Ali, T. M., Mustafa, G., and Hasnain, A. 2020. Structural, Functional and Digestibility Characteristics of Sorghum and Corn Starch Extrudates (RS3) as Affected by Cold Storage Time. International Journal of Biological Macromolecules. 164(12): 3048-3054.

DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.105.

Yang, Y., Chen, Q., Yu, A., Tong, S., and Gu, Z. 2021. Study on Structural Characterization, Physicochemical Properties and Digestive Properties of Euryale Ferox Resistant Starch. Food Chemistry. 359(10): 129924.

DOI: https://doi.org/10.1016/j.foodchem.2021.129924.

Liu, Q., Jiao, A., Yang, Y., Wang, Y., Li, J., Xu, E., Yang, G., and Jin, Z. 2021. The Combined Effects of Extrusion and Recrystallization Treatments on the Structural and Physicochemical Properties and Digestibility of Corn and Potato Starch. LWT - Food Science and Technology. 151(11): 112238.

DOI: https://doi.org/10.1016/j.lwt.2021.112238.

Mutlu, S., Kahraman, K., Severcan, S., and Ozturk. 2018. Modelling the Effects of Debranching and Microwave Irradiation Treatments on the Properties of High Amylose Corn Starch by Using Response Surface Methodology. Food Biophysics. 13(1): 9532.

DOI: 10.1007/s11483-018-9532-9.

Xiao, Y., Wu, X., Zhang, B., Lao, F., Lin, Q., and Ding, Y. 2021. Understanding the Aggregation Structure, Digestive and Rheological Properties of Corn, Potato, and Pea Starches Modified by Ultrasonic Frequency. International Journal of Biological Macromolecules. 189(10): 1008-1019.

DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.163.

Liang, S., Hong, Y., Gu, Z., Cheng, L., Li, C., and Li, Z. 2021. Effect of Debranching on the Structure and Digestibility of Octenyl Succinic Anhydride Starch Nanoparticles. LWT - Food Science and Technology. 141(4): 111076.

DOI: https://doi.org/10.1016/j.lwt.2021.111076.

Wu, C., Zhou, X., Wei, B., Tian, Y., Xu, X., and Jin, Z. 2016. Effects of a-Maltotriohydrolase Hydrolysis Prior to Debranching on the Structure and Digestibility of Normal Maize Starch. Strach Starke. 68(5): 1-8.

DOI: 10.1002/star.201600078.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., and Rothstein, H. R. 2009. Fixed-effect Versus Random-Effects Models. In: Introduction to Meta-Analysis. John Wiley & Sons Ltd, Hoboken, NJ, USA. 77-86.

DOI: 10.1002/9780470743386.ch13.

Downloads

Published

2022-12-02

Issue

Section

Science and Engineering

How to Cite

EFFECT OF AUTOCLAVING-COOLING ON RESISTANT STARCH CONTENT AND PREBIOTIC PROPERTIES OF HIGH CARBOHYDRATE FOODS: META-ANALYSIS STUDY. (2022). Jurnal Teknologi, 85(1), 81-90. https://doi.org/10.11113/jurnalteknologi.v85.18515