SUBSTRATES AND METABOLIC PATHWAYS IN SYMBIOTIC CULTURE OF BACTERIA AND YEAST (SCOBY) FERMENTATION: A MINI REVIEW

Authors

  • Nurliyana Sofiya Zailani Faculty of Science and Marine Environment, UMT, 21030, Kuala Nerus, Terengganu, Malaysia
  • Azila Adnan Faculty of Science and Marine Environment, UMT, 21030, Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18534

Keywords:

Kombucha, fermented beverages, SCOBY, Acetic Acid Bacteria, metabolic pathway

Abstract

Kombucha is a fermented beverage that is prepared traditionally by fermenting Symbiotic Culture of Bacteria and Yeast (SCOBY) with sugar and black/green tea, which is known as Camellia sinensis leaves. The previous study analyses the microbial composition that can be obtained in Kombucha production. Study shows that yeast species and acetic acid bacteria (AAB) species are the microorganisms that involve in the fermentation process of Kombucha. Some studies emphasize the chemical composition that was obtained from the production of Kombucha drinks such as organic acids, sugars, ethanol, and polyphenols. However, further review and elucidation regarding the substrates used and metabolic activity in Kombucha fermentation is necessary. Thus, the objective of this study is to review the metabolic pathway and substrates involve in Symbiotic Culture of Bacteria and Yeast (SCOBY) fermentation. This review also collected information related to the symbiosis of fermentation by yeast and AAB pathway in Kombucha fermentation. Several pharmaceutical effects of Kombucha were also discussed to prove the health benefits of Kombucha. To produce good quality and high yield of Kombucha that can provide various health benefits to consumers, it is crucial to understand the connection between the metabolic activity with Symbiotic Culture of Bacteria and Yeast (SCOBY) during the fermentation process of Kombucha. By conducting this review work, it could provide an insightful overview and better understanding of metabolic pathways and substrates involved in SCOBY and Kombucha fermentation.

References

Bergström, H. 2018. The Effect of the Fermented Tea Beverage Kombucha on the Gut Microflora.

Mazraedoost, S. and Banaei, N. 2020. Biochemical Composition Properties of Kombucha SCOBY: Mini Reviews. Advances in Applied NanoBio-Technologies. 1(4): 99-104.

Kapp, J. M. and Sumner, W. 2019. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Annals of Epidemiology. 30: 66-70.

DOI: https://doi.org/10.1016/j.annepidem.2018.11.001.

Coelho, R. M. D., Almeida, A. L. de, Amaral, R. Q. G. do, Mota, R. N. da and Sousa, P. H. M. de. 2020. Kombucha: Review. International Journal of Gastronomy and Food Science. 22: 100272.

DOI: https://doi.org/10.1016/j.ijgfs.2020.100272.

Dutta, H. and Paul, S. K. 2019. 8 - Kombucha Drink: Production, Quality, and Safety Aspects. In A. M. Grumezescu & A. M. Holban (Eds.). Production and Management of Beverages, Woodhead Publishing. 259-288.

Jayabalan, R. and Waisundara, V. Y. 2019. 12—Kombucha as a Functional Beverage. In A. M. Grumezescu & A. M. Holban (Eds.). Functional and Medicinal Beverages. Academic Press. 413-446.

Zhen-jun Zhao, Y. S., Wu, H., Zhou, C. and Xian-chun Hu, J. Z. 2018. Flavour Chemical Dynamics during Fermentation of Kombucha Tea. Emirates Journal of Food and Agriculture. 732-741.

DOI:https://doi.org/https://doi.org/10.9755/ejfa.2018.v30.i9.1794.

Malakar, S., Paul, S. K. and Jolvis Pou, K. R. 2020. 1 - Biotechnological Interventions in Beverage Production. In: Grumezescu, A. M., Holban, A. M. (Eds.). Biotechnological Progress and Beverage Consumption. Academic Press. 1-37.

Amarasekara, A. S., Wang, D. and Grady, T. L. 2020. A Comparison of Kombucha SCOBY Bacterial Cellulose Purification Methods. SN Applied Science. 2: 240.

DOI: https://doi.org/10.1007/s42452-020-1982-2.

Laavanya, D., Shirkole, S. and Balasubramanian, P. 2021. Current Challenges, Applications and Future Perspectives of SCOBY Cellulose of Kombucha Fermentation. Journal of Cleaner Production. 295: 126454.

DOI: https://doi.org/10.1016/j.jclepro.2021.126454.

May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C. and Aktipis, A. 2019. Kombucha: A Novel Model System for Cooperation and Conflict in a Complex Multi-species Microbial Ecosystem. PeerJ. 7: e7565.

DOI: https://doi.org/10.7717/peerj.7565.

Mousavi, S. M., Hashemi, S. A., Zarei, M., Gholami, A., Lai, C. W., Chiang, W. H., Omidifar, N., Bahrani, S. and Mazraedoost, S. 2020. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. Evidence-Based Complementary and Alternative Medicine. 2020: e4397543.

DOI: https://doi.org/10.1155/2020/4397543.

Talebi, M., Frink, L. A., Patil, R. A. and Armstrong, D. W. 2017. Examination of the Varied and Changing Ethanol Content of Commercial Kombucha Products. Food Analytical Methods. 10: 4062-4067.

DOI: https://doi.org/10.1007/s12161-017-0980-5.

Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., Renard, T., Rollan, S. and Taillandier, P. 2019. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochemistry. 83: 44-54.

DOI: https://doi.org/10.1016/j.procbio.2019.05.004.

Al-Mohammadi, A. -R., Ismaiel, A. A., Ibrahim, R. A., Moustafa, A. H., Abou Zeid, A. and Enan, G. 2021. Chemical Constitution and Antimicrobial Activity of Kombucha Fermented Beverage. Molecules. 26: 5026.

DOI: https://doi.org/10.3390/molecules26165026.

Sharifudin, S. A., Ho, W. Y., Yeap, S. K., Abdullah, R. and Koh, S. P. 2021. Fermentation and Characterisation of Potential Kombucha Cultures on Papaya-based Substrates. LWT. 151: 112060.

DOI: https://doi.org/10.1016/j.lwt.2021.112060.

Jafari, R., Naghavi, N. S., Khosravi-Darani, K., Doudi, M. and Shahanipour, K. 2020. Kombucha Microbial Starter with Enhanced Production of Antioxidant Compounds and Invertase. Biocatalysis and Agricultural Biotechnology. 29: 101789.

DOI: https://doi.org/10.1016/j.bcab.2020.101789.

Soares, M. G., de Lima, M. and Reolon Schmidt, V. C. 2021. Technological Aspects of Kombucha, Its Applications and the Symbiotic Culture (SCOBY), and Extraction of Compounds of Interest: A Literature Review. Trends in Food Science & Technology. 110: 539-550.

DOI: https://doi.org/10.1016/j.tifs.2021.02.017.

Sinir, G. Ö., Tamer, C. E. and Suna, S. 2019. 10 - Kombucha Tea: A Promising Fermented Functional Beverage. In: Grumezescu, A. M., Holban, A. M. (Eds.). Fermented Beverages. Woodhead Publishing. 401-432.

Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G. and Coton, E. 2017. Unraveling Microbial Ecology of Industrial-scale Kombucha Fermentations by Metabarcoding and Culture-based Methods. FEMS Microbiology Ecology. 93.

DOI: 10.1093/femsec/fix048.

Ahmed, R. F., Hikal, M. S. and Abou-Taleb, K. A. 2020. Biological, Chemical and Antioxidant Activities of Different Types Kombucha. Annals of Agricultural Sciences. 65: 35-41.

DOI: https://doi.org/10.1016/j.aoas.2020.04.001.

Melkonian, E. A. and Schury, M. P. 2021. Biochemistry, Anaerobic Glycolysis. in: StatPearls. StatPearls Publishing, Treasure Island (FL).

Chaudhry, R. and Varacallo, M. 2021. Biochemistry, Glycolysis. In: StatPearls. StatPearls Publishing, Treasure Island (FL).

Leonard, W., Zhang, P., Ying, D., Adhikari, B. and Fang, Z. 2021. Fermentation Transforms the Phenolic Profiles and Bioactivities of Plant-based Foods. Biotechnology Advances. 49: 107763.

DOI: https://doi.org/10.1016/j.biotechadv.2021.107763.

Zentou, H., Zainal Abidin, Z., Yunus, R., Awang Biak, D. R., Abdullah Issa, M. and Yahaya Pudza, M. 2021. A New Model of Alcoholic Fermentation under a Byproduct Inhibitory Effect. ACS Omega. 6: 4137-4146.

DOI: 10.1021/acsomega.0c04025.

Gomes, R. J., Borges, M. de F., Rosa, M. de F., Castro-Gómez, R. J. H. and Spinosa, W. A. 2018. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology. 56: 139-151.

DOI: 10.17113/ftb.56.02.18.5593.

Lynch, K. M., Zannini, E., Wilkinson, S., Daenen, L. and Arendt, E. K. 2019. Physiology of Acetic Acid Bacteria and their Role in Vinegar and Fermented Beverages. Comprehensive Reviews in Food Science and Food Safety. 18: 587-625.

DOI: https://doi.org/10.1111/1541-4337.12440.

Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H. and Tourdot-Maréchal, R. 2020. Microbiological and Technological Parameters Impacting the Chemical Composition and Sensory Quality of Kombucha. Comprehensive Reviews in Food Science and Food Safety. 19: 2050-2070.

De Filippis, F., Troise, A.D., Vitaglione, P. and Ercolini, D. 2018. Different Temperatures Select Distinctive Acetic Acid Bacteria Species and Promotes Organic Acids Production During Kombucha Tea Fermentation. Food Microbiology. 73: 11-16.

DOI: 10.1016/j.fm.2018.01.008.

Kumar, V. and Joshi, V. K. 2016. Kombucha: Technology, Microbiology, Production, Composition and Therapeutic Value. International Journal of Food and Fermentation Technology. 6: 13.

DOI: 10.5958/2277-9396.2016.00022.2.

Antolak, H., Piechota, D. and Kucharska, A. 2021. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants. 1: 1541.

DOI: 10.3390/antiox10101541.

Prasanth, M. I., Sivamaruthi, B. S., Chaiyasut, C. and Tencomnao, T. 2019. A Review of the Role of Green Tea (Camellia sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 11: 474.

DOI: 10.3390/nu11020474.

Naveed, M., BiBi, J., Kamboh, A. A., Suheryani, I., Kakar, I., Fazlani, S. A., FangFang, X., kalhoro, S. A., Yunjuan, L., Kakar, M. U., Abd El-Hack, M. E., Noreldin, A. E., Zhixiang, S., LiXia, C. and XiaoHui, Z. 2018. Pharmacological Values and Therapeutic Properties of Black Tea (Camellia sinensis): A Comprehensive Overview. Biomedicine & Pharmacotherapy. 100: 521-531.

DOI: 10.1016/j.biopha.2018.02.048.

Dubey, K. K., Janve, M., Ray, A. and Singhal, R. S. 2020. Chapter 4 - Ready-to-drink Tea. In: Galanakis, C.M. (Ed.). Trends in Non-Alcoholic Beverages. Academic Press. 101-140.

Cardoso, R. R., Neto, R. O., dos Santos D’Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L. and Barros, F. A. R. de. 2020. Kombuchas from Green and Black Teas have Different Phenolic Profile, which Impacts their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Research International. 128: 108782.

DOI: https://doi.org/10.1016/j.foodres.2019.108782.

Saeed, M., Naveed, M., Arif, M., Kakar, M. U., Manzoor, R., Abd El-Hack, M. E., Alagawany, M., Tiwari, R., Khandia, R., Munjal, A., Karthik, K., Dhama, K., Iqbal, H. M. N., Dadar, M. and Sun, C. 2017. Green Tea (Camellia sinensis) and l-theanine: Medicinal Values and Beneficial Applications in Humans—A Comprehensive Review. Biomedicine & Pharmacotherapy. 95: 1260-1275.

DOI: 10.1016/j.biopha.2017.09.024.

Azevedo, R. S. A., Teixeira, B. S., Sauthier, M. C. da S., Santana, M. V. A., dos Santos, W. N. L. and Santana, D. de A. 2019. Multivariate Analysis of the Composition of Bioactive in Tea of the Species Camellia sinensis. Food Chemistry, 8th Brazilian Workshop of Chemometrics: Application of Chemometrics techniques In Food Chemistry. 273: 39-44.

DOI: https://doi.org/10.1016/j.foodchem.2018.04.030.

Bueno, F., Chouljenko, A. and Sathivel, S. 2021. Development of Coffee Kombucha Containing Lactobacillus rhamnosus and Lactobacillus casei: Gastrointestinal Simulations and DNA Microbial Analysis. LWT- Food Science and Technology. 142: 110980.

DOI: https://doi.org/10.1016/j.lwt.2021.110980.

Fibrianto, K., Zubaidah, E., Muliandari, N. A., Wahibah, L. Y., Putri, S. D., Legowo, A. M. and Al-Baarri, A. N. 2020. Antioxidant Activity Optimisation of Young Robusta Coffee Leaf Kombucha by Modifying Fermentation Time and Withering Pre-treatment. IOP Conference Series: Earth Environmental. Science. 475: 012029.

DOI: 10.1088/1755-1315/475/1/012029.

Kusdiana, R. N., Ferdi, V., Kusumawardhana, I. and Levyta, F. 2020. Hedonic Test of Kombucha Coffee. IOP Conference Series: Materials Science and Engineering. 924: 012005.

DOI: :10.1088/1757-899X/924/1/012005.

Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A. and Mammi, L. 2020. Short Communication: Characterization of Molasses Chemical Composition. Journal of Dairy Science. 103: 6244-6249.

DOI: 10.3168/jds.2019-17644.

Luo, J., Guo, S., Wu, Y. and Wan, Y. 2018. Separation of Sucrose and Reducing Sugar in Cane Molasses by Nanofiltration. Food Bioprocess Technology. 11: 913-925.

Varaee, M., Honarvar, M., Eikani, M.H., Omidkhah, M. R. and Moraki, N. 2019. Supercritical Fluid Extraction of Free Amino Acids from Sugar Beet and Sugar Cane Molasses. The Journal of Supercritical Fluids. 144: 48-55.

DOI: https://doi.org/10.1016/j.supflu.2018.10.007.

Jamir, L., Kumar, V., Kaur, J., Kumar, S. and Singh, H. 2021. Composition, Valorization and Therapeutical Potential of Molasses: A Critical Review. Environmental Technology Reviews. 10: 131-142.

Djordjević, Mi., Šereš, Z., Maravić, N., Šćiban, M., Šoronja-Simović, D. and Djordjević, M. 2021. Modified Sugar Beet Pulp and Cellulose-based Adsorbents as Molasses Quality Enhancers: Assessing the Treatment Conditions. LWT-Food Science and Technology. 150: 111988.

DOI: https://doi.org/10.1016/j.lwt.2021.111988.

Zhang, S., Wang, J., and Jiang, H. 2021. Microbial Production of Value-added Bioproducts and Enzymes from Molasses, a By-product of Sugar Industry. Food Chemistry. 346: 128860.

DOI: 10.1016/j.foodchem.2020.128860.

Majtan, J., Bucekova, M., Kafantaris, I., Szweda, P., Hammer, K. and Mossialos, D. 2021. Honey Antibacterial Activity: A Neglected Aspect of Honey Quality Assurance as Functional Food. Trends in Food Science & Technology. 118: 870-886.

Gaglio, R., Alfonzo, A., Francesca, N., Corona, O., Di Gerlando, R., Columba, P. and Moschetti, G. 2017. Production of the Sicilian Distillate “Spiritu re fascitrari” from Honey By-products: An Interesting Source of Yeast Diversity. International Journal of Food Microbiology. 261: 62-72.

DOI: 10.1016/j.ijfoodmicro.2017.09.004.

Mărgăoan, R., Cornea-Cipcigan, M., Topal, E. and Kösoğlu, M. 2020. Impact of Fermentation Processes on the Bioactive Profile and Health-promoting Properties of Bee Bread, Mead and Honey Vinegar. Processes. 8: 1081.

Keșa, A. -L., Pop, C. R., Mudura, E., Salanță, L. C., Pasqualone, A., Dărab, C., Burja-Udrea, C., Zhao, H. and Coldea, T. E. 2021. Strategies To Improve the Potential Functionality of Fruit-based Fermented Beverages. Plants. 10: 2263.

Koundouras, S. 2018. Environmental and Viticultural Effects on Grape Composition and Wine Sensory Properties. Elements. 14: 173-178.

Ayed, L., Ben Abid, S. and Hamdi, M. 2017. Development of a Beverage from Red Grape Juice Fermented with the Kombucha Consortium. Annals of Microbiology. 67: 111-121.

Mazumdar, P., Pratama, H., Lau, S.-E., Teo, C. H., Harikrishna, J. A. 2019. Biology, Phytochemical Profile and Prospects for Snake Fruit: An Antioxidant-rich Fruit of South East Asia. Trends in Food Science & Technology. 91: 147-158.

DOI: https://doi.org/10.1016/j.tifs.2019.06.017.

Zubaidah, E., Dewantari, F. J., Novitasari, F. R., Srianta, I. and Blanc, P. J. 2018. Potential of Snake Fruit (Salacca zalacca (Gaerth.) Voss) for the Development of a Beverage through Fermentation with the Kombucha Consortium. Biocatalysis and Agricultural Biotechnology. 13: 198-203.

DOI: https://doi.org/10.1016/j.bcab.2017.12.012.

Gyesi, J. N., Opoku, R. and Borqueye, L. S. 2019. Chemical Composition, Total Phenolic Content, and Antioxidant Activities of the Essential Oils of the Leaves and Fruit Pulp of Annona muricata L. (Soursop) from Ghana. Biochemistry Research International. 2019: 4164576.

DOI: https://doi.org/10.1155/2019/4164576.

Mizuta, A. G., de Menezes, J. L., Dutra, T. V., Ferreira, T. V., Castro, J. C., da Silva, C. A. J., Pilau, E. J., Machinski Junior, M. and Abreu Filho, B. A. de. 2020. Evaluation of Antimicrobial Activity of Green Tea Kombucha at Two Fermentation Time Points Against Alicyclobacillus spp. LWT. 130: 109641.

Wiwanitkit, V. 2018. Chapter 2 - Important Emerging and Reemerging Tropical Food-borne Diseases. In: Holban, A. M., Grumezescu, A. M. (Eds.). Foodborne Diseases, Handbook of Food Bioengineering. Academic Press. 33-55.

Hou, J., Luo, R., Ni, H., Li, K., Mgomi, F. C., Fan, L. and Yuan, L. 2021. Antimicrobial Potential of Kombucha against Foodborne Pathogens: A Review. Quality Assurance and Safety of Crops & Foods. 13: 53-61.

Bhatt, A., Kothari, D., Kothari, C., Kothari, R. 2021. Probiotic: An Uprising Human Health Concept. IntechOpen.

Kaewkod, T., Bovonsombut, S. and Tragoolpua, Y. 2019. Efficacy of Kombucha Obtained from Green, Oolong, and Black Teas on Inhibition of pathogenic Bacteria, Antioxidation, and Toxicity on Colorectal Cancer Cell Line. Microorganisms. 7: 700.

DOI: 10.3390/microorganisms7120700.

Lichota, A. and Gwozdzinski, K. 2018. Anticancer Activity of Natural Compounds from Plant and Marine Environment. International Journal of Molecular Sciences. 19: 3533.

Tasdemir, S. S and Nevin Sanlier, N. 2020. An Insight into the Anticancer Effects of Fermented Foods: A Review. Journal of Functional Foods. 75: 2020, 10428.

DOI: https://doi.org/10.1016/j.jff.2020.104281.

Vitas, J. S., Cvetanović, A. D., Mašković, P. Z., Švarc-Gajić, J. V. and Malbaša, R. V. 2018. Chemical Composition and Biological Activity of Novel Types of Kombucha Beverages with Yarrow. Journal of Functional Foods. 44: 95-102.

DOI: https://doi.org/10.1016/j.jff.2018.02.019.

Amarasekara, A. S., Wang, D. and Grady, T. L. 2020. A Comparison of Kombucha SCOBY Bacterial Cellulose Purification Methods. SN Applied Sciences. 2: 240. https://doi.org/10.1007/s42452-020-1982-2.

Marchetti, L., and Andrés, S. C. 2021. Use of Nanocellulose in Meat Products. Current Opinion in Food Science. 38: 96-101. http://dx.doi. org/10.1016/j.cofs.2020.11.003.

Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J. and Han, S. S. 2022. Bacterial Cellulose and Its Applications. Polymers. 14: 1080. https://doi.org/10.3390/polym14061080.

Guo, Y., Zhang, X., Hao, W., Xie, Y., Chen, L., Li, Z. and Zhu, B., Feng, X. 2018. Nano-bacterial Cellulose/soy Protein Isolate Complex Gel as Fat Substitutes in Ice Cream Model. Carbohydrate Polymers. 198: 620-630.

https://doi: 10.1016/j.carbpol.2018.06.078.

Kwon, H. C., Shin, D. M., Yune, J. H., Jeong, C. H., and Han, S. G. 2021. Evaluation of Gels Formulated with Whey Proteins and Sodium Dodecyl Sulfate as a Fat Replacer in Low-fat Sausage. Food Chemistry. 337: 127682. http://dx.doi.org/10.1016/j.foodchem.2020.127682.

Published

2022-07-26

How to Cite

Zailani, N. S. ., & Adnan, A. (2022). SUBSTRATES AND METABOLIC PATHWAYS IN SYMBIOTIC CULTURE OF BACTERIA AND YEAST (SCOBY) FERMENTATION: A MINI REVIEW. Jurnal Teknologi, 84(5). https://doi.org/10.11113/jurnalteknologi.v84.18534

Issue

Section

Science and Engineering