PERFORMANCE OF BUBBLE COLUMN BIOREACTOR TO PRODUCE LIQUID ORGANIC FERTILIZER (LOF) FROM COW URINE AND SLURRY ORGANIC WASTE

Authors

  • Yohanes Setiyo Department of Agricultural and Biosystem Engineering, Faculty of Agriculture Technology, Udayana University, Badung 80361, Indonesia
  • Bambang Admadi Harsojuwono Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung 80361, Indonesia
  • Ida Bagus Wayan Gunam Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung 80361, Indonesia
  • Ida Bagus Putu Gunadnya Department of Agricultural and Biosystem Engineering, Faculty of Agriculture Technology, Udayana University, Badung 80361, Indonesia
  • I Gusti Ngurah Apriadi Aviantara Department of Agricultural and Biosystem Engineering, Faculty of Agriculture Technology, Udayana University, Badung 80361, Indonesia
  • I Gusti Ayu Lani Triani Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung 80361, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18539

Keywords:

Organic waste slurry liquid organic fertilizer, bioreactor fermentation, and cow urine

Abstract

This research aimed to evaluate the effectiveness of various diffusers in a bioreactor for producing liquid organic fertilizer (LOF) using cow urine and slurry organic waste as materials. LOF was produced by treating the organic waste with Urine-Single Orifice Diffuser (USOD), Urine-Coarse Bubble Diffuser (UCBD), Urine-Fine Bubble Diffuser (UFBD), Slurry-Single Orifice Diffuser (SSOD), Slurry-Coarse Bubble Diffuser (SCBD), and Slurry-Fine Bubble Diffuser (SFBD) in a bioreactor equipped with a water pump and an external aerator unit. The pump circulated and agitated the biomass at a discharge of 10 L/min. Meanwhile, the external aerator unit pumped air into the bioreactor, which the biomass absorbed at a discharge of 45 L/min. The discharge of biomass and water also caused agitation of the fermented biomass. Several variables were observed during the fermentation process, including temperature, acidity (pH), total dissolved solids (TDS), C/N ratio, electrical conductivity (EC), biological oxygen demand (BOD), microbial population, cation exchange capacity (CEC), and other chemical properties. LOF produced had a pH, temperature, total organic matter content, EC, TDS, BOD, microbial population, and CEC values of 6.3–6.8, 28.0–37.0°C, 20.77–22.46%, 54630–62369.24 µmS, 7543–11700 ppm, 1.2–2.6 mg/L, 3.2–7.5 log CFU, 12.3–14.1, and 29.98 me/100 g, respectively. The macro and micro nutrient contents of bio-urine were 12.72–12.96%, and 3.09–3.25%. Meanwhile, those of the bio-slurry were 12.35–12.99% and 2.39–2.72%. These characteristics of LOF were in accordance with the Indonesian National Standard (SNI).

References

Li, D. P. and Z. J. Wu. 2018. Impact of Chemical Fertilizers Application on Soil Ecological Environment. J. Ying Yong Sheng Tai Xue Bao. 19(5): 1158-1165.

Pahalvi, H. N., L. R. Majeed, S. Rashid, and B. Nizar. 2021. Chemical Fertilizers and Their Impact on Soil Health. Microbiota and Biofertilizers. 2: 1–20. Doi: 10.1007/978-3-030-61010-4_1.

Kilande G., J. S. Tenywa, M. C. Rwakaikara-Silver, and A. A. Katushabe. 2016. Cattle Urine as a Fertilizer: Micro-biochemical Changes in Fermenting Cattle Urine and Implications on Plant Nutrient Conservation. British Microbiology Research Journal. 11(2): 1-10.

Sastro, Y. and B. Bakri. 2018. The Effect of Fermentation Method, Microbes Inoculation and Carbon Source Proportion on the Quality of Organic Fertilizer Made from Liquid Wastes of Chicken Slaughterhouse. Journal of the Indonesian Tropical Animal Agriculture. 38(4): 257-263 Doi: 10.14710/jitaa.38.4.257-263.

Pramana, K. S., Y. Setiyo, I G. N. A. Aviantara. 2019. Optimalisation of Cow Urine Fermentation Process. Jurnal BETA 7(1): 153-158. https://doi.org/10.24843/JBETA.2019.v07.i01.p05.

Paramita, P., M. Shovitri, and N. D. Kuswytasari. 2012. Market Organic Waste Biodegradation Using Natural Microorganisms in Septic Tanks. ITS Science and Arts Journal. 1: E23-E26,

Dalzell, H. W., A. J. Riddleston, K. R. Gray, and K. Thuenrairajan. 1987. Soil Managemen Compost Production and Use in Tropical and Subtropical Environment. FAO. Rome.

Aritonang, M., Y. Setiyo, I. B. P. Gunadnya. 2013. Optimalisation Cow Urine Fermentation Process Become to Bio-urine. Jurnal BETA. 1: 268-279.

Suhartana, I P. G., Y. Setiyo, and I W. Widia. 2015. Study of Sludge Cow Manure Fermentation Process. Jurnal BETA. 5(1): 12-22.

Mudiarta, I. M., Y. Setiyo, and I. W. Widia, 2018. Study Bioslurry of Bio-slurry from Cow Manure Fermentation Process with Adition Mollases. JITP Agrotechno. 3(1): 277-283. https://doi.org/10.24843/JITPA.2018.v03.i01.p03.

Putra J. K. G., Y. Setiyo, I. N. Sucipta. 2022. Impact of Adition Nitrosomonas Bacterial at Cow Urine Fermentation to Produce Liquid Organic Fertilizer. Jurnal BETA. 10(1): 12-22. Doi: https://doi.org/10.24843/JBETA.2022.v10.i01.p02.

Wirawan I. W. E., Y. Setiyo, I. A. G. B. Madrini. 2021. Study of Vegetable and Fruit from Traditional Marked with Fermentation. Jurnal BETA. 9(2): 268-279. Doi: https://doi.org/10.24843/JBETA.2021.v09.i02.p14.

Mohanty I., M. R. Senapati, D. Jena, and S. Paalai. 2014. Diversified Uses of Cow Urine. International Journal of Pharmacy and Pharmaceutical Sciences. 6(3): 20-22.

Nuraini Y., and Asgianingrum. 2017. Improving the Quality of Cattle Biourin with the Addition of Biofertilizers and Molasses and their Effect on Growth and Productivity of Pakchoy. Journal of Indonesian Horticulture. 8(3): 183-191. Doi: 10.29244/jhi.8.3.183-191.

Liu, C., Y. Sun, N. Li, B. Zhang, and F. Zhen. 2019. Impact of Temperature Fluctuation on Anaerobic Fermentation Process of Upgrading Bioreactor under Solar Radiant Heating. Applied Thermal Engineering. 156: 382-391. https://doi.org/10.1016/j.applthermaleng.2019.04.092.

Setiyo, Y., N. L. Yulianti, P. B Sanjaya, and I. B. W Gunam. 2021. The Impact of Calorage Changes on Bio-urine Quality from Aerobic and Anaerobic Fermentation Process in a Bioreactor. Journal of Global Biosciences. 10(4): 8512–8529.

Jiang, Y., J. Meiting, L. Weizun, R. Qingbin, L. Liu, Y. Chen, Q. Yang, Q. Hou, and Y. Liu. 2015. Rapid Production of Organic Fertilizer by Dynamic High-temperature Aerobic Fermentation (DHAF) of Food Waste. Biores. Technology. 197: 7-14. Doi: 10.1016/j.biortech.2015.08.053.

Kantarcia, N., F. Borak, and K. O. Ulge. 2005. Bubble Column Reactors. Process Biochemistry. 40: 2263-2283. https://doi.org/10.1016/j.procbio.2004.10.004.

Dunn, I. J. 2003. Biological Reaction Engineering: Dynamic Modelling Fundamentals with Simulation Examples. Weinheim: Wiley-VCH Verlag. 508. Doi: 10.1002/3527603050

Crush, F. C. A. Marioucos, and A. M. Bilton. 2022. Experimental Characterization of an Oxygen Transfer Model of a Fine Pore Diffuser Aerator. Aquacultural Engineering. 98. Doi: 10.1016/j.aquaeng.2022.102259.

Silva, S., C. Baffi, S. Spalla, C. Cassinari, and P. Lodigiani. 2010. Method for the Determination of CEC and Exchangeable Bases in Calcareous Soils. Agrochimica. 54(2): 103-114.

Anon. 2009. Food and Agricultural Organization of United Nations. Standard Operating Procedure for Soil Organic Carbon. Global Soil Partnership, Manila, Philippines.

Anon. 2018. Nitrogen Determination by Kjeldahl Method. PanReac, AppliChem, ITW Reagen. https://www.itwreagents.com/uploads/20180114/A173_EN.pdf.

Sherrell, C. G. 1970. Comparison of Chemical Extraction Methods for the Determination of “Available” Phosphate in Soils. New Zealand Journal of Agricultural Research. 13(3): 481-493. Doi: 10.1080/00288233.1970.10421597.

Chouchan, S. 2015. Enumeration and Identification of Standard Plate Count Bacteria in Raw Water Supplies. OSR Journal of Environmental Science, Toxicology and Food Technology. 9(2): 67-73. Doi: 10.9790/2402-09226773.

Holman, J. P. 1997. Transfer of Heat. Sixth Edition, Interpretation: E, Jasjfi. Erlangga, Jakarta.

Butnairu, M., and A. Butu. 2015. Chemical Composition of Vegetables and Their Products. Handbook of Food Chemistry. 3: 627-692. Doi: 10.1007/978-3-642-36605-5_17.

Romelle, F. B., A.P Rani, and R. S. Manohar. 2016. Chemical Composition of Some Selected Fruit Peels. European Journal of Food Science and Technology. 4(4): 12-21.

Safitri, A., A. Roosdiana, A. Srihardyastutie, and Masruri. 2018. Fermentation of Cow Urine Collected from Ngabab Village, Malang: Its Potential as Liquid Fertilizer. IOP Conf. Series: Earth and Environmental Science. 239(2019): 012029. IOP Publishing. Doi: 10.1088/1755-1315/239/1/012029.

Lübbert, A. 1987. Bubble Columns and Airlift Bioreactors Biotechnology, Bubble Columns and Airlift Bioreactors. https://www.eolss.net/Sample-Chapters/C17/E6-58-04-19.pdfhttps://www.eolss.net/Sample-Chapters/C17/E6-58-04-19.pdf.

Hosseini, M., S. A. Shojaosadati, and J. Thofighi. 2003. Application of a Bubble-column Reactor for the Production of a Single-cell Protein from Cheese Whey. Industrial & Engineering Chemistry Research. 42(4): 764-766. Doi: 10.1021/ie020254o.

Ali, J., R. P. Singh, and V. Durgapal. 2016. Biogas Production from Different Organic Biomass Materials by Anaerobic Batch Fermentation. American Journal of Biomass and Bioenergy. 5(1): 43-56. Doi: 10.7726/ajbb.2016.1004.

LOF SNI Standar. 2019. Decree of the Minister of Agriculture of the Republic of Indonesia No: 261/KPTS/SR. 310/M/4/2019.

Gwon, B. G. and J. K. Kim. 2012. Feasibility Study on Production of Liquid Fertilizer in a 1 m3 Reactor using Fishmeal Wastewater for Commercialization. Environ. Eng. Res. 17(1): 3-8. http://dx.doi.org/10.4491/eer.2012.17.1.003.

Kalpesh, C. Ashara and Ketan V. Shah. 2016. Cow’s Urine: An Incredible Aqueous Phase. Global Journal of Biotechnology & Biochemistry. 11(2): 145-152. Doi: 10.5829/idosi.gjbb.2016.11.02.104149.

Marickar, F. 2010. Electrical Conductivity and Total Dissolved Solids in Urine. Urological Research. 38: 233-235. Doi: 10.1007/s00240-009-0228-y.

Gazinsky, E., and F. Boege. 2002. Urine Screening with the UF-series Analyzers: The Use of Urine Conductivity as a Surrogate Marker of Urine Osmolality and Renal Diuresis. Sysmex J. Int. 12: 76-79.

Degaleesan, S., M. Dudukovic, Y. Pan. 2001. Experimental Study of Gasinduced Liquid-flow Structures in Bubble Columns. AIChE Journal. 47: 1913-1931. https://doi.org/10.1002/aic.690470904.

Setiyo, Y., I. B. W. Gunam, I. B. P. Gunadnya, K. A. Yuliadhi. 2018. Application of Chicken Manure Compost as Organic Fertilizer to Improve the Quality and Productivity of Potato (Solanum tuberosum L.). Ecol Environ Conserv. 24: 23-34.

Setiyo, Y., I. B. W. Gunam, I. B. P. Gunadnya, K. B. Susrusa. 2017. The implementation of Low External Input Sustainable Agriculture System to Increase Productivity of Potatoes (Solanum tuberosum L.). J Food Agric Environ. 15(2): 62-67.

Shoemaker, W. R., S. E. Jones, M. E. Muscarella, M. G. Behringer, B. K. Lehmkuhl, and J. T. Lennon. 2021. Microbial Population Dynamics and Evolutionary Outcomes under Extreme Energy Limitation. Proc. Natl. Acad. Sci. 118(33). https://doi.org/10.1073/pnas.2101691118.

Bristow, A. W., D. C. Whitehead, J. E. Cockburn. 2006. Nitrogenous Constituents in the Urine of Cattle, Sheep and Goats. J. Sci. Food Agri. 59: 387-394. https://doi.org/10.1002/jsfa.2740590316.

Garcia-Ochoa, F., and E. Gomez. 2009. Bioreactor Scale-up and Oxygen Transfer Rate in Microbial Processes: An Overview. Biotechnology Advances. 27: 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006.

Paek, K. Y., D. Chakrabarty, E. J. Hahn. 2005. Application of Bioreactor Systems for Large Scale Production of Horticultural and Medicinal Plants. Plant Cell, Tissue and Organ Culture. 81: 287-300.

Miah, N. A., R. U. Miah, and M. Z. Alam. 2017. Determining Chemical Composition of Cattle Urine and Indigenous Plant Extracts. International Annals of Science. 3(1): 23-26. Doi: 10.21467/ias.3.1.23–26.

Nasir, M., M. Ghazi, R. Omar, and A. Idris. 2014. Bioreactor Performance in the Anaerobic Digestion of Cattle Manure. Energy Sources, Part A. 36: 1476-1483.

Raden, I., S. Syarif, Fathiliah, M. Fadli, and Suyadi. 2017. Nutrient Content of Liquid Organic Fertilizer (LOF) by Various Bio-activator and Soaking Time. Nusantara Bioscience. 9(2): 209-213. Doi: 10.13057/nusbiosci/n090217.

Rosenfeld, P. E., and C. L. Henry. 2000. Wood and Ash Control of Odor from Biosolids Application. J. Environ. Qual. 29: 1662-1668. Doi: 10.2134/jeq2000.0047242500 2900050038x.

Setiyo Y., I. B. P. Gunadnya, I. B. W. Gunam, I. G. A. Lani Triani, P. Budisanjaya, and N. L. Yulianti. 2023. The Impact of Implementation of the Leisa System on the Conservation and Land Restoration of Citrus Cultivation in Bali, Indonesia. International Jurnal of Agriculture and Biology. 29: 181-192. Doi: 10.17957/IJAB/15.2018.

Downloads

Published

2023-06-25

Issue

Section

Science and Engineering

How to Cite

PERFORMANCE OF BUBBLE COLUMN BIOREACTOR TO PRODUCE LIQUID ORGANIC FERTILIZER (LOF) FROM COW URINE AND SLURRY ORGANIC WASTE. (2023). Jurnal Teknologi (Sciences & Engineering), 85(4), 83-96. https://doi.org/10.11113/jurnalteknologi.v85.18539