GPS CONTINUOUSLY OPERATING REFERENCE STATION (CORS) SELECTION TOWARDS REGIONAL GPS ORBIT DETERMINATION: A SIMULATED STUDY USING TRILATERATION TECHNIQUE
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.18541Keywords:
GPS orbit determination, regional GPS orbit determination, Satellite Position Dilution of Precision (SPDOP), trilateration, simulated GPS measurement, CORS selectionAbstract
Global Positioning System (GPS) orbital error can be minimized using precise satellite orbit. These precise satellite orbits are calculated using GPS measurements from ground CORS. The distribution of the CORS involved in GPS satellite orbit determination is important, especially in the case of regional GPS orbit determination. A regional GPS orbit is an orbital product generated using locally distributed CORS network and is expected to improve the GPS measurement in the region. Satellite Position Dilution of Precision (SPDOP) is proposed as an indicator to measure the geometry of the CORS with respect to the GPS satellite. GPS measurements are simulated by calculating the range from GPS satellites to the CORS. The simulated measurement is then used to calculate the position of GPS satellite using trilateration algorithm. Results shows the SPDOP has a linear relationship with orbit determination accuracy. This study shows that SPDOP can be used as an indicator for a better CORS selection in GPS orbit determination.
References
Rizos, C. 2017. Surveying. In O. M. Peter J. G. (Ed.). Springer Handbook of Global Navigation Satellite System. Teunissen, Springer International Publishing: Gewerbestrasse 11, 6330 Cham, Switzerland. 1011-1038.
Langely, R. B., P. J. G. Teunissen, and O. Montenbruck, 2017. Introduction to GNSS. In O. M. Peter J. G. Teunissen. (Ed.). Springer Handbook of Global Navigation Satellite System, Springer International Publishing: Gewerbestrasse 11, 6330 Cham, Switzerland. 1-24.
Musa, T. A., et al. 2006. Mitigation of Distance-dependent Errors for GPS Network Positioning. Proceedings of IGNSS Conference.
Karaim, M., et al. 2018. GNSS Error Sources. Intech. 69-85.
Beutler, G., et al. 1986. Determination of GPS Orbits using Double Difference Carrier Phase Observations from Regional Networks. Bulletin géodésique. 60(3): 205-220.
Johnston, G., A. Riddell, and G. Hausler. 2017. The International GNSS Service. In O. M. Peter J. G. Teunissen. (Ed.). Springer Handbook of Global Navigation Satellite System, Springer International Publishing: Gewerbestrasse 11, 6330 Cham, Switzerland. 967-982.
Urs Hugentobler, O. M. 2017. Satellite Orbits and Attitude. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer International Publishing. 79-84.
IGS. 2020. IGS AC Strategy Summary. [cited 2020 1 January]. Available from: ftp://igs.org/pub/center/analysis/.
International GNSS Service (IGS). 2021. IGS-Site Guideline. [cited 2021 9 February 2021]. Available from: https://www.igs.org/stations/#site-guidelines.
Zhang, R., et al. 2015, Impact of Tracking Station Distribution Structure on BeiDou Satellite Orbit Determination. Advances in Space Research. 56(10): 2177-2187.
McLoughlin, I. V., K. J. Wong, and S. L. Tan. 2011. Data Collection, Communications and Processing in the Sumatran GPS Array (SuGAr). Proceedings of the World Congress on Engineering.
Haji Hassan, M. S. 2007. Pekeliling Arahan Keselamatan Terhadap Dokumen Geospatial Terperingkat. In J. P. Menteri. (Ed.). Jabatan Perdana Menteri, Aras 4 Timur, Blok A, Bangunan Perdana Putra, Pusat Pentadbiran Kerajaan Persekutuan, 62502 Putrajaya, Malaysia.
Lee, H. S. 2020. Orbital Improvement Towards Precise Regional GPS Orbit, in Faculty of Built Environment and Surveying. Universiti Teknologi Malaysia: Malaysia. 66.
Kouba, J. and P. Héroux. 2001. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions. 5(2): 12-28.
Montenbruck, O., P. Steigenberger, and A. Hauschild. 2014. Broadcast Versus Precise Ephemerides: A Multi-GNSS Perspective. GPS Solutions. 19(2): 321-333.
Strasser, S., T. Mayer-Gürr, and N. Zehentner. 2019. Processing of GNSS Constellations and Ground Station Networks using the Raw Observation Approach. Journal of Geodesy. 93(7): 1045-1057.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins. 2012. Global Positioning System: Theory and Practice. Springer Science & Business Media.
Won, D. H., et al. 2012. Weighted DOP with Consideration on Elevation-dependent Range Errors of GNSS Satellites. IEEE Transactions on Instrumentation and Measurement. 61(12): 3241-3250.
Amirrudin, M. A. et al. 2020. Assessment of the Accuracy and Precision of MyRTKnet Real-Time Services. Jurnal Teknologi. 83(1): 93-103.
Mohd Zaidi, M. A. 2018. Development of RGRF2018: Geocentric Datum of NRCnet. Faculty of Built Environment and Surveying. Universiti Teknologi Malaysia. 98.
Dach, R., et al. 2016. CODE final Product Series for the IGS. https://boris.unibe.ch/75876/1/AIUB_AFTP.TXT.
Chen, M., et al. 2017. Precise Orbit Determination of BeiDou Satellites with Contributions from Chinese National Continuous Operating Reference Stations. Remote Sensing. 9(8): 810.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.