KESAN KETEBALAN LAPISAN PENGANGKUT ELEKTRON TIO2 TERHADAP PRESTASI SEL SURIA ORGANIK: KAJIAN SIMULASI

EFFECTS OF TIO2 ELECTRON TRANSPORT LAYER THICKNESS ON THE PERFORMANCE OF ORGANIC SOLAR CELL: SIMULATION STUDY

Authors

  • Chi Chin Yap Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Norhazirah Dahalan Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Ain Hafizatul Abi Talib Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Nur Izzati Mohamed Rosli Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18565

Keywords:

Electron transport layer, organic solar cell, SCAPS, simulation, thickness

Abstract

Organic solar cell has gained more attention due to its low-cost production and easy fabrication process. However, the power conversion efficiency (PCE) is still low as compared to that of inorganic solar cell. One of the approaches to improve the PCE of organic solar cell is by introducing an electron transport layer which can extract the electrons effectively in between photoactive layer and cathode. Simulation study using SCAPS (Solar Cell Capacitance Simulator) software was conducted to examine the effects of TiO2 electron transport layer thickness on the performance of organic solar cell with ITO/TiO2/P3HT:PCBM/Ag structure. P3HT:PCBM acted as photoactive layer, whereas ITO and Ag played roles as cathode and anode, respectively. The range of studied thickness was from 30 to 180 nm. The simulation result indicates that the PCE increased with TiO2 layer thickness in the range of 30 to 120 nm, and it saturated when the TiO2 layer thickness was further raised to 180 nm. The highest PCE of 2.139% was obtained at TiO2 layer thickness of 180 nm.

References

Kadam, K. D., Kim, H., Rehman, S., Patil, H., Aziz, J., Dongale, T. D., Khan, M. F., & Kim, D.-K. 2021. Compositional Dynamics of the Electron Transport Layer (ZnO:PEIE) in P3HT:PC61BM Organic Solar Cells. Materials Science in Semiconductor Processing. 136: 106118.

DOI: http://dx.doi.org/10.1016/j.mssp.2021.106118.

Aoki, R. M., Torres, E. T. D. S., de Jesus, J. P. A., Lourenço, S. A., Fernandes, R. V., Laureto, E., & Toledo da Silva, M. A. 2021. Application of Heterostructured CdS/ZnS Quantum Dots as Luminescence Down-shifting Layer in P3HT:PCBM Solar Cells. Journal of Luminescence. 237: 118178.

DOI: http://dx.doi.org/10.1016/j.jlumin.2021.118178.

Khairulaman, F. L., Yap, C. C., & Jumali, M. H. H. 2021. Improved Performance of Inverted Type Organic Solar Cell using Copper Iodide-doped P3HT: PCBM as Active Layer for Low Light Application. Materials Letters 283: 128827.

DOI: http://dx.doi.org/10.1016/j.matlet.2020.128827.

Palilis, L. C., Vasilopoulou, M., Verykios, A., Soultati, A., Polydorou, E., Argitis, P., Davazoglou, D., Mohd Yusoff, A. R. B., & Nazeeruddin, M. K. 2020. Inorganic and Hybrid Interfacial Materials for Organic and Perovskite Solar Cells. Advanced Energy Materials. 10(27): 2000910.

DOI: http://dx.doi.org/10.1002/aenm.202000910.

Kim, T., Lim, J., & Song, S. 2020. Recent Progress and Challenges of Electron Transport Layers in Organic⇓Inorganic Perovskite Solar Cells. Energies. 13(21): 5572.

DOI: http://dx.doi.org/10.3390/en13215572.

Kırbıyık, Ç., Akın Kara, D., Kara, K., Büyükçelebi, S., Yiğit, M. Z., Can, M., & Kuş, M. 2019. Improving the Performance of Inverted Polymer Solar Cells through Modification of Compact TiO2 Layer by Different Boronic Acid Functionalized Self-assembled Monolayers. Applied Surface Science. 479: 177-184.

DOI: http://dx.doi.org/10.1016/j.apsusc.2019.01.268.

Sun, H., Weickert, J., Hesse, H. C., & Schmidt-Mende, L. 2011. UV Light Protection through TiO2 Blocking Layers for Inverted Organic Solar Cells. Solar Energy Materials and Solar Cells. 95(12): 3450-3454. DOI: http://dx.doi.org/https://doi.org/10.1016/j.solmat.2011.08.004.

Jiang, Z., Yang, D., Wang, N., Zhang, F., Zhao, B., Tan, S., & Zhang, J. 2013. Inverted Polymer Solar Cells with TiO2 Electron Extraction Layers Prepared by Magnetron Sputtering. Science China Chemistry. 56(11): 1573-1577. DOI: http://dx.doi.org/10.1007/s11426-013-4901-1.

Yan, Y., Cai, F., Yang, L., Li, J., Zhang, Y., Qin, F., Xiong, C., Zhou, Y., Lidzey, D. G., & Wang, T. 2017. Light-Soaking-Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low-Temperature-Processed TiO2 Electron-Transport Layer. Advanced Materials. 29(1): 1604044.

DOI: http://dx.doi.org/10.1002/adma.201604044.

Örnek, O., Kösemen, Z. A., Öztürk, S., Canımkubey, B., Fındık, Ş., Erkovan, M., & Kösemen, A. 2017. Performance Enhancement of Inverted Type Organic Solar Cells by using Eu Doped TiO2 Thin Film. Surfaces and Interfaces. 9: 64-69. DOI: http://dx.doi.org/10.1016/j.surfin.2017.08.003.

Burgelman, M., Nollet, P., & Degrave, S. 2000. Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films. 361-362: 527-532.

DOI: http://dx.doi.org/10.1016/S0040-6090(99)00825-1.

Kaharudin, K. E., & Salehuddin, F. 2022. Predictive Modeling of Mixed Halide Perovskite Cell using Hybrid L27 OA Taguchi-based GA-MLR-GA Approach. Jurnal Teknologi. 84(1): 1-9.

DOI: http://dx.doi.org/10.11113/jurnalteknologi.v84.15550.

Hacène, S. B., & Benouaz, T. 2014. Influence of Charge Carrier Mobility and Surface Recombination Velocity on the Characteristics of P3HT:PCBM Organic Solar Cells. Physica Status Solidi (A) Applications and Materials Science. 211(4): 862-868.

DOI: http://dx.doi.org/10.1002/pssa.201330320.

Lee, Y.-J., Adkison, B. L., Xu, L., Kramer, A. A., & Hsu, J. W. P. 2016. Comparison of Conventional and Inverted Organic Photovoltaic Devices with Controlled Illumination Area and Extraction Layers. Solar Energy Materials and Solar Cells. 144: 592-599.

DOI: http://dx.doi.org/10.1016/j.solmat.2015.09.059.

MacKenzie, R. C. I., Kirchartz, T., Dibb, G. F. A., & Nelson, J. 2011. Modeling Nongeminate Recombination in P3HT:PCBM Solar Cells. Journal of Physical Chemistry C. 115(19): 9806-9813.

DOI: http://dx.doi.org/10.1021/jp200234m.

MacKenzie, R. C. I., Shuttle, C. G., Chabinyc, M. L., & Nelson, J. 2012. Extracting Microscopic Device Parameters from Transient Photocurrent Measurements of P3HT:PCBM Solar Cells. Advanced Energy Materials. 2(6): 662-669.

DOI: http://dx.doi.org/10.1002/aenm.201100709.

Mackenzie, R. C. I., Shuttle, C. G., Dibb, G. F., Treat, N., von Hauff, E., Robb, M. J., Hawker, C. J., Chabinyc, M. L., & Nelson, J. 2013. Interpreting the Density of States Extracted from Organic Solar Cells using Transient Photocurrent Measurements. Journal of Physical Chemistry C. 117(24): 12407-12414.

DOI: http://dx.doi.org/10.1021/jp4010828.

Gan, Y., Bi, X., Liu, Y., Qin, B., Li, Q., Jiang, Q., & Mo, P. 2020. Numerical Investigation Energy Conversion Performance of Tin-based Perovskite Solar Cells using Cell Capacitance Simulator. Energies. 13(22): 5907.

DOI: http://dx.doi.org/10.3390/en13225907.

Abdelaziz, W., Zekry, A., Shaker, A., & Abouelatta, M. 2020. Numerical Study of Organic Graded Bulk Heterojunction Solar Cell using SCAPS Simulation. Solar Energy. 211: 375-382.

DOI: http://dx.doi.org/10.1016/j.solener.2020.09.068.

Wu, J., Zhang, Y., He, Y., Liu, C., Guo, W., & Ruan, S. 2014. Application of Solution-processed V2O5 in Inverted Polymer Solar Cells based on Fluorine-doped TiN Oxide Substrate. Journal of Nanoscience and Nanotechnology. 14(6): 4214-4217.

DOI: http://dx.doi.org/10.1166/jnn.2014.8037.

Yerli, Y., Alparslan, Z., Ksemen, A., Örnek, O., & San, S. E. 2011. TiO2-based Organic Hybrid Solar Cells with Mn+2 Doping. International Journal of Photoenergy. 2011: 734618.

DOI: http://dx.doi.org/10.1155/2011/734618.

Mehdizadeh Rad, H., Zhu, F., & Singh, J. 2018. Profiling Exciton Generation and Recombination in Conventional and Inverted Bulk Heterojunction Organic Solar Cells. Journal of Applied Physics. 124: 083103.

DOI: http://dx.doi.org/10.1063/1.5031062.

Thakur, A. K., Wantz, G., Garcia-Belmonte, G., Bisquert, J., & Hirsch, L. 2011. Temperature Dependence of Open-circuit Voltage and Recombination Processes in Polymer-fullerene based Solar Cells. Solar Energy Materials and Solar Cells. 95(8): 2131-2135.

DOI: http://dx.doi.org/10.1016/j.solmat.2011.03.012.

Zhao, N., Osedach, T. P., Chang, L.-Y., Geyer, S. M., Wanger, D., Binda, M. T., Arango, A. C., Bawendi, M. G., & Bulovic, V. 2010. Colloidal PbS Quantum Dot Solar Cells with High Fill Factor. ACS Nano. 4(7): 3743-3752.

DOI: http://dx.doi.org/10.1021/nn100129j.

Guerrero, A., Ripolles-Sanchis, T., Boix, P. P., & Garcia-Belmonte, G. 2012. Series Resistance in Organic Bulk-heterojunction Solar Devices: Modulating Carrier Transport with Fullerene Electron Traps. Organic Electronics. 13(11): 2326-2332.

DOI: http://dx.doi.org/10.1016/j.orgel.2012.06.043.

Downloads

Published

2022-09-25

Issue

Section

Science and Engineering

How to Cite

KESAN KETEBALAN LAPISAN PENGANGKUT ELEKTRON TIO2 TERHADAP PRESTASI SEL SURIA ORGANIK: KAJIAN SIMULASI: EFFECTS OF TIO2 ELECTRON TRANSPORT LAYER THICKNESS ON THE PERFORMANCE OF ORGANIC SOLAR CELL: SIMULATION STUDY. (2022). Jurnal Teknologi, 84(6), 51-58. https://doi.org/10.11113/jurnalteknologi.v84.18565