• Nur Farah Syahirah Abd Kadir School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia https://orcid.org/0000-0002-5878-2477
  • Nor Monica Ahmad School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia https://orcid.org/0000-0002-9333-8398
  • Sharifah Aminah Syed Mohamad School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia https://orcid.org/0000-0002-6161-7915
  • Lee Suan Chua Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-2493-9963
  • Eddie Ti Tjih Tan School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia https://orcid.org/0000-0001-8296-0029




Eggshell, eggshell membranes, hydrolysates, enzymatic hydrolysis, protein solubility


Eggshell membrane (ESM) is considered food waste or a by-product of the egg processing industry. It has huge application potential in the engineering, nutraceutical, pharmaceutical, and cosmeceutical sectors. Recently, researchers have shown an increased interest in ESM hydrolysate (ESMH) from enzymatic hydrolysis in biomaterial applications. Nonetheless, there is lacking of information on the characteristics of ESMH. Thus, this study aims to characterise ESMH attained from enzymatic hydrolysis. The ESM was manually separated from the eggshell, and then subjected to enzymatic hydrolysis using two (2) different enzymes (alcalase (Al) and trypsin (Tr)). The alcalase-treated ESMH (Al-ESMH) and trypsin-treated ESMH (Tr-ESMH) were then characterised by using Ultra-violet Visible Spectroscopy (UV-Vis) and Fourier Transform Infrared Spectroscopy (FTIR). UV spectra displayed two intense absorbance peaks; 238 nm and 280 nm. The second peak at 280 nm was used to quantify the soluble protein in ESMHs. The results showed that the Al-ESMH had higher protein solubility (17.25±0.11 mg/mL) than the Tr-ESMH (3.28±0.11 mg/mL) and ESM (2.11±0.19 mg/mL). The FTIR spectra of ESMHs prove the presence of peptides for both treated ESM samples after enzymatic hydrolysis.


Quina, M. J., Soares, M. A. and Quinta-Ferreira, R. 2017. Applications of Industrial Eggshell as a Valuable Anthropogenic Resource. Resources, Conservation and Recycling. 123: 176-186. https://doi.org/10.1016/j.resconrec.2016.09.027.

Xiao, J., Zhang, Y., Wu, S., Zhang, H., Yue, H. and Qi, G. 2014. Manganese Supplementation Enhances the Synthesis of Glycosaminoglycan in Eggshell Membrane: A Strategy to Improve Eggshell Quality in Laying Hens. Poultry Science. 93(2): 380-388. https://doi.org/10.3382/ps.2013-03354.

University of Oxford. Per Capita Egg Consumption 1961 to 2017. 2021 27th October 2021]; Available from: https://ourworldindata.org/grapher/per-capita-egg-consumption-kilograms-per-year?tab=chart&country=CHN~MYS~USA.

Waheed, M., Yousaf, M., Shehzad, A., Inam-Ur-Raheem, M., Khan, M. K. I., Khan, M. R., Ahmad, N. and Aadil, R. M. 2020. Channelling Eggshell Waste to Valuable and Utilizable Products: A Comprehensive Review. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2020.10.009.

Sonenklar, C. Famous for Egg Waste. 1999 Monday, April 20, 2020; September 01]. Available from: https://news.psu.edu/story/140891/1999/09/01/research/famous-egg-waste.

Mignardi, S., Archilletti, L., Medeghini, L. and De Vito, C. 2020. Valorization of Eggshell Biowaste for Sustainable Environmental Remediation. Scientific Reports. 10(1): 1-10. https://doi.org/10.1038/s41598-020-59324-5.

Park, S., Choi, K. S., Lee, D., Kim, D., Lim, K. T., Lee, K. H., Seonwoo, H. and Kim, J. 2016. Eggshell Membrane: Review and Impact on Engineering. Biosystems Engineering. 151: 446-463. https://doi.org/10.1016/j.biosystemseng.2016.10.014.

Aditya, S., Stephen, J. and Radhakrishnan, M. 2021. Utilization of Eggshell Waste in Calcium-Fortified Foods and Other Industrial Applications: A Review. Trends in Food Science & Technology. 115: 422-432. https://doi.org/10.1016/j.tifs.2021.06.047.

Kulshreshtha, G., Diep, T., Hudson, H. A. and Hincke, M. T. 2022. High Value Applications and Current Commercial Market for Eggshell Membranes and Derived Bioactives. Food Chemistry: 132270. https://doi.org/10.1016/j.foodchem.2022.132270.

Shi, Y., Zhou, K., Li, D., Guyonnet, V., Hincke, M. T. and Mine, Y. 2021. Avian Eggshell Membrane as a Novel Biomaterial: A Review. Foods. 10(9): 2178. https://doi.org/10.3390/foods10092178.

Mensah, R. A., Jo, S. B., Kim, H., Park, S. M., Patel, K. D., Cho, K. J., Cook, M. T., Kirton, S. B., Hutter, V., Sidney, L. E., Alves-Lima, D., Lin, H., Lee, J. H., Kim, H. W. and Chau, D. Y. 2021. The Eggshell Membrane: A Potential Biomaterial for Corneal Wound Healing. J Biomater Appl. 36(5): 912-929. https://doi.org/10.1177/08853282211024040.

Baláž, M. 2014. Eggshell Membrane Biomaterial as a Platform for Applications in Materials Science. Acta biomaterialia. 10(9): 3827-3843. https://doi.org/10.1016/j.actbio.2014.03.020.

Parvin, S., Biswas, B. K., Rahman, M. A., Rahman, M. H., Anik, M. S. and Uddin, M. R. 2019. Study on Adsorption of Congo Red onto Chemically Modified Egg Shell Membrane. Chemosphere. 236: 124326. https://doi.org/10.1016/j.chemosphere.2019.07.057.

Bayraktar, O., Galanakis, C. M., Aldawoud, T. M., Ibrahim, S. A., Köse, M. D. and Uslu, M. E. 2021. Utilization of Eggshell Membrane and Olive Leaf Extract for the Preparation of Functional Materials. Foods. 10(4): 806. https://doi.org/10.3390/foods10040806.

Yi, F., Yu, J., Guo, Z. X., Zhang, L. X. and Li, Q. 2003. Natural Bioactive Material: A Preparation of Soluble Eggshell Membrane Protein. Macromolecular Bioscience. 3(5): 234-237. https://doi.org/10.1002/mabi.200390030.

Takenaka, S., Hano, S., Cheng, M., Yoshida, K. I. and Aoki, K. 2012. Organic Solvent-Tolerant Elastase Efficiently Hydrolyzes Insoluble, Cross-Linked, Protein Fiber of Eggshell Membranes. Biotechnology Letters. 34(5): 949-955. https://doi.org/10.1007/s10529-012-0861-3.

Ahmed, T. A., Suso, H. P. and Hincke, M. T. 2017. In-Depth Comparative Analysis of the Chicken Eggshell Membrane Proteome. Journal of Proteomics. 155: 49-62. https://doi.org/10.1016/j.jprot.2017.01.002.

Xiao, N., Huang, X., He, W., Yao, Y., Wu, N., Xu, M., Du, H., Zhao, Y. and Tu, Y. 2021. A Review on Recent Advances of Egg Byproducts: Preparation, Functional Properties, Biological Activities and Food Applications. Food Research International. 147: 110563. https://doi.org/10.1016/j.foodres.2021.110563.

Jeon, J., Choi, M., Kim, S. B., Seo, T. H., Ku, B. C., Ryu, S., Park, J. H. and Kim, Y.-K. 2021. Eggshell Membrane Hydrolysate as a Multi-Functional Agent for Synthesis of Functionalized Graphene Analogue and Its Catalytic Nanocomposites. Journal of Industrial and Engineering Chemistry. 102: 233-240. https://doi.org/10.1016/j.jiec.2021.07.010.

Lee, M. C. and Huang, Y. C. 2019. Soluble Eggshell Membrane Protein-Loaded Chitosan/Fucoidan Nanoparticles for Treatment of Defective Intestinal Epithelial Cells. International Journal of Biological Macromolecules. 131: 949-958. https://doi.org/10.1016/j.ijbiomac.2019.03.113.

Kulshreshtha, G., Ahmed, T. A., Wu, L., Diep, T. and Hincke, M. T. 2020. A Novel Eco-Friendly Green Approach to Produce Particalized Eggshell Membrane (Pem) for Skin Health Applications. Biomaterials Science. 8(19): 5346-5361. https://doi.org/10.1039/D0BM01110J.

Jain, S. and Anal, A. K. 2016. Optimization of Extraction of Functional Protein Hydrolysates from Chicken Egg Shell Membrane (Esm) by Ultrasonic Assisted Extraction (Uae) and Enzymatic Hydrolysis. LWT-Food Science and Technology. 69: 295-302. https://doi.org/10.1016/j.lwt.2016.01.057.

Nasri, M. 2017. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. Advances in Food and Nutrition Research. 81: 109-159. https://doi.org/10.1016/bs.afnr.2016.10.003.

Saadi, S., Saari, N., Anwar, F., Hamid, A. A. and Ghazali, H. M. 2015. Recent Advances in Food Biopeptides: Production, Biological Functionalities and Therapeutic Applications. Biotechnology Advances. 33(1): 80-116. https://doi.org/10.1016/j.biotechadv.2014.12.003.

Suhandy, D. and Yulia, M. 2021. Classification of Lampung Robusta Specialty Coffee According to Differences in Cherry Processing Methods Using Uv Spectroscopy and Chemometrics. Agriculture. 11(2): 109. https://doi.org/10.3390/agriculture11020109.

Chang, S. K. and Zhang, Y. 2017. Protein Analysis, in Food Analysis. Springer. 315-331. https://doi.org/10.1007/978-3-319-45776-5_18.

Greenfield, E. A. 2018. Protein Quantitation. Cold Spring Harbor Protocols. Cold Spring Harbor Protocols. 482. https://doi.org/10.1101/pdb.prot098202.

Liu, F., Wang, L., Wang, R. and Chen, Z. 2013. Calcium-Binding Capacity of Wheat Germ Protein Hydrolysate and Characterization of Peptide-Calcium Complex. Journal of Agricultural and Food Chemistry. 61(31): 7537-7544. https://doi.org/10.1021/jf401868z.

King'Ori, A. 2011. A Review of the Uses of Poultry Eggshells and Shell Membranes. International Journal of Poultry Science. 10(11): 908-912. https://doi.org/10.3923/ijps.2011.908.912.

Ai, M., Tang, T., Zhou, L., Ling, Z., Guo, S. and Jiang, A. 2019. Effects of Different Proteases on the Emulsifying Capacity, Rheological and Structure Characteristics of Preserved Egg White Hydrolysates. Food Hydrocolloids. 87: 933-942. https://doi.org/10.1016/j.foodhyd.2018.09.023.

Manzoor, M., Singh, J., Ray, A. and Gani, A. 2021. Recent Advances in Analysis of Food Proteins. Food Biopolymers: Structural, Functional and Nutraceutical Properties. 269-298. https://doi.org/10.1007/978-3-030-27061-2_12.

Zhu, L., Xiong, H., Huang, X., Guyonnet, V., Ma, M., Chen, X., Zheng, Y., Wang, L. and Hu, G. 2022. Identification and Molecular Mechanisms of Novel Antioxidant Peptides from Two Sources of Eggshell Membrane Hydrolysates Showing Cytoprotection against Oxidative Stress: A Combined in Silico and in Vitro Study. Food Research International. 111266. https://doi.org/10.1016/j.foodres.2022.111266.

Jain, S. and Anal, A. K. 2018. Preparation of Eggshell Membrane Protein Hydrolysates and Culled Banana Resistant Starch-Based Emulsions and Evaluation of Their Stability and Behavior in Simulated Gastrointestinal Fluids. Food Research International. 103: 234-242. https://doi.org/10.1016/j.foodres.2017.10.042.

Zhao, Q. C., Zhao, J. Y., Ahn, D. U., Jin, Y. G. and Huang, X. 2019. Separation and Identification of Highly Efficient Antioxidant Peptides from Eggshell Membrane. Antioxidants. 8(10): 495. https://doi.org/10.3390/antiox8100495.

Sah, M. K. and Rath, S. N. 2016. Soluble Eggshell Membrane: A Natural Protein to Improve the Properties of Biomaterials Used for Tissue Engineering Applications. Materials Science and Engineering: C. 67: 807-821. https://doi.org/10.1016/j.msec.2016.05.005.

Sah, M. K. and Pramanik, K. 2014. Soluble‐Eggshell‐Membrane‐Protein‐Modified Porous Silk Fibroin Scaffolds with Enhanced Cell Adhesion and Proliferation Properties. Journal of Applied Polymer Science. 131(8). https://doi.org/10.1002/app.40138.

Reinmuth-Selzle, K., Tchipilov, T., Backes, A. T., Tscheuschner, G., Tang, K., Ziegler, K., Lucas, K., Pöschl, U., Fröhlich-Nowoisky, J. and Weller, M. G. 2022. Determination of the Protein Content of Complex Samples by Aromatic Amino Acid Analysis, Liquid Chromatography-Uv Absorbance, and Colorimetry. Analytical and Bioanalytical Chemistry. 1-14. https://doi.org/10.1007/s00216-022-03910-1.

Nor Hisamuddin, N. S., Abdul Muttalib, S. A., Abd Kadir, N. F. S., Syed Mohamad, S. A., Ahmad, N. M. and Tan, E. T. T. Laboratory Scale Eggshell Membrane Separation and Hydrolysis. Inaugural Symposium of Research and Innovation for Food (SoRIF), 2021. Universiti Teknologi MARA Cawangan Negeri Sembilan, Malaysia. 23-24 June 2021. 104-107.

Daraei, H., Mittal, A., Mittal, J. and Kamali, H. 2014. Optimization of Cr (Vi) Removal onto Biosorbent Eggshell Membrane: Experimental & Theoretical Approaches. Desalination and Water Treatment. 52(7-9): 1307-1315. https://doi.org/10.1080/19443994.2013.787374.

Arihara, K., Yokoyama, I. and Ohata, M. 2021. Bioactivities Generated from Meat Proteins by Enzymatic Hydrolysis and the Maillard Reaction. Meat Science. 180: 108561. https://doi.org/10.1016/j.meatsci.2021.108561.




How to Cite

Abd Kadir, N. F. S. ., Ahmad, N. M. ., Syed Mohamad , S. A. ., Chua, L. S., & Tan, E. T. T. (2022). EFFECT OF ENZYMATIC HYDROLYSIS ON THE STRUCTURAL AND PROTEIN SOLUBILITY OF EGGSHELL MEMBRANE. Jurnal Teknologi, 84(6), 81-88. https://doi.org/10.11113/jurnalteknologi.v84.18654



Science and Engineering