• Pek-Lan Toh Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
  • Syed Amir Abbas Shah Naqvi Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
  • Suh-Miin Wang Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
  • Yao-Cong Lim Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia



Density functional theory, hydrogen storage system, boron nitride nanotubes, electronic structures, HOMO-LUMO energies


In this report, a density functional theory (DFT) computational approach was used to investigate the structural and electronic properties of molecular hydrogens adsorbed on single-walled boron nitride nanotubes (BNNTs) with/without doped by group IV elements, such as carbon (C), silicon (Si), and germanium (Ge) atom. The twelve hydrogen molecules (H2) were added to the outer surfaces of BNNT frameworks. Geometry optimization calculations were performed to find the local energy minima of the BNNTs nanostructures with the molecular hydrogens at the DFT/B3LYP/6-31G level of theory. By employing single-point calculations at the B3LYP/6-31G* level of theory, the equilibrium geometric structures were then utilized to find the electronic structures of hydrogen molecules adsorbed on the surfaces of BNNT frameworks. The results showed that the bond lengths of B-N are in the range of1.44 Å – 1.48 Å. The optimized distances of hydrogen molecules from the surfaces of BNNTs were predicted to be 3.1 Å – 3.2 Å. Moreover, the computed HOMO-LUMO energies of molecular hydrogens adsorbed on the surface of BNNTs are about 2.2 eV – 4.3 eV. For the surface map of HOMO, the electron density distribution of hydrogen molecules adsorbed on the surface of pristine BNNT was localized in the N-tip. While in the case of doped BNNTs, the electron densities of HOMOs were focused on the group IV elements. The B-tips on the pristine and doped BNNTs possess the major contribution to the LUMO. 


Joy, J., George, E., Haritha, P., Thomas, S. & Anas, S. 2020. An Overview of Boron Nitride based Polymer Nanocomposites. Journal of Polymer Science. 58: 3115-3141. DOI: 10.1002/pol.20200507.

Angizi, S., Alem, S. A. A. & Pakdel, A. 2022. Towards Integration of Two-Dimensional Hexagonal Boron Nitride (2D h-BN) in Energy Conversion and Storage Devices. Energies. 15(3): 1162(1-34). DOI: 10.3390/en15031162.

Zhao, Y., Wu, X., Yang, J. & Zeng, X. C. 2011. Ab Initio Theoretical Study of Non-covalent Adsorption of Aromatic Molecules on Boron Nitride Nanotubes. Physical Chemistry Chemical Physics. 12(24): 11766-11772. DOI: 10.1039/c1cp20534j.

Ju, S. P., Wang Y. C. & Lien T. W. 2011. Tuning the Electronic Properties of Boron Nitride Nanotube by Mechanical Uni-axial Deformation: A DFT Study. Nanoscale Research Letters. 6(1): 160(1-11). DOI: 10.1186/1556-276x-6-160.

Seyed-Talebi, S. M. & Neek-Amal, M. 2014. The Different Adsorption Mechanism of Methane Molecule onto a Boron Nitride and a Graphene Flakes. Journal of Applied Physics. 116(15): 153507(1-7). DOI: 10.1063/1.4898336.

Chua Abdullah, M. I. H., Abdollah, M. F., Amiruddin, H., Tamaldin, N. & Nuri, N. R. M. 2014. Effect of hBN/Al2O3 Nanoparticle Additives on the Tribological Performance of Engine Oil. Jurnal Teknologi. 66(3): 1-6. DOI: 10.11113/jt.v66.2685.

Javan, M. B., Soltani, A., Ghasemi, A. S., Lemeski, E. T., Gholami, N. & Balakhenyli, H. 2017. Ga-doped and Antisite Double Defects Enhance the Sensitivity of Boron Nitride Nanotubes towards Soman and Chlorosoman. Applied Surface Science. 411: 1-10. DOI: 10.1016/j.apsusc.2017.03.187

Guo, H., Yang, T., Xuan, X., Zhang, Z. & Guo, W. 2022. Flexoelectricity in Hexagonal Boron Nitride Monolayers. Extreme Mechanics Letters. 52: 101669(1-7). DOI: 10.1016/j.eml.2022.101669.

Anota, E. C., Juárez, A. R., Castro, M. & Cocoletzi, H. H. 2013. A Density Functional Theory Analysis for the Adsorption of the Amine Group on Graphene and Boron Nitride Nanosheets. Journal of Molecular Modelling. 19(1): 321-328. DOI: 10.1007/s00894-012-1539-4.

Merlo, A., Mokkapati, V. R. S. S., Pandit, S. & Mijakovic, I. 2018. Boron Nitride Nanomaterials: Biocompatibility and Bio-applications. Biomaterials Science. 6: 2298-2311. DOI: 10.1039/C8BM00516H.

Bilal, M., Xu, W., Wang, C., Wen, H., Zhao, X., Song, D. & Ding, L. 2020. Optoelectronic Properties of Monolayer Hexagonal Boron Nitride on Different Substrates Measured by Terahertz Time-Domain Spectroscopy. Nanomaterials (Basel). 10(4): 762(1-11). DOI: 10.3390/nano10040762.

Shah Naqvi, S. A. A., Toh P. L., Wang. S. M., Lim, Y. C., Ang, L. S. & Sim L. C. 2021. Computational Study of Hydrogen Molecules Adsorption on Boron Nitride with/without Adopted by One of Elements from Group IV. IOP Conference Series: Earth and Environmental Science. 945: 012001(1-7). DOI: 10.1088/1755-1315/945/1/012001.

Kamali, F., Ebrahimzadeh-Rajaei, G., Mohajeri, S., Shamel, A., & Khodadadi-Moghaddam, M. 2022. A Computational Design of X24Y24 (X= B, Al, and Y= N, P) Nanoclusters as Effective Drug Carriers for Metformin Anticancer Drug: A DFT Insight. Inorganic Chemistry Communications. 109527.

DOI: 10.1016/j.inoche.2022.109527.

Baierle, R. J., Piquini, P., Schmidt, T. M. & Fazzio, A. 2006. Hydrogen Adsorption on Carbon-Doped Boron Nitride Nanotube. Journal of Physical Chemistry B. 110(42): 21184-21188. DOI: 10.1021/jp061587s.

Krishnan, S., Vadapoo, R., Riley, K. E. & Velev, J. P. 2011. Dispersion-corrected Density Functional Theory Comparison of Hydrogen Adsorption on Boron-nitride and Carbon Nanotubes. Physical Review B. 84: 165408(1-6). DOI:10.1103/PhysRevB.84.165408.

Wu, X., Yang, J. L. & Zeng, X. C. 2006. Adsorption of Hydrogen Molecules on the Platinum-doped Boron Nitride Nanotubes. Journal of Chemical Physics. 125: 044704(1-6).

DOI: 10.1063/1.2210933.

Cabria, I., López, M.J. & Alonso, J. A. 2006. Density Functional Study of Molecular Hydrogen Coverage on Carbon Nanotubes. Computational Materials Science. 35(3): 238-242. DOI: 10.1016/j.commatsci.2004.10.008.

Diep, P. & Johnson, J. K. 2000. An Accurate H2-H2 Interaction Potential from First Principles. Journal of Chemical Physics. Journal of Chemical Physics. 112(10): 4465-4473. DOI: 10.1063/1.481009.

Sunnardianto, G. K., Bokas, G., HUssein. A., Walters, C., Moultos, O. A. & Dey, P. 2021. Efficient Hydrogen Storage in Defective Graphene and its Mechanical Stability: A Combined Density Functional Theory and Molecular Dynamics Simulation Study. International Journal of Hydrogen Energy. 46(7): 5485-5494. DOI: 10.1016/j.ijhydene.2020.11.068.

Ghosh, S., Nigam, S., Das, G. P. & Majumdar, C. 2010. Novel Properties of Boron Nitride Nanotubes Encapsulated with Fe, Co, and Ni Nanoclusters. Journal of Chemical Physics. 132: 164704(1-8). DOI: 10.1063/1.3381183.

Mirzaei, M. & Mirzaei, M. 2010. A Computational Study of Oxygen-termination of a (6,0) Boron Nitride Nanotube. Monatshefte Für Chemie/Chemical Monthly. 141: 491-494.

DOI: 10.1007/S00706-010-0287-3.

Mirzaei, M. & Mirzaei, M. 2010. Sulfur Doping at the Tips of (6,0) Boron Nitride Nanotube: A DFT Study. Physica E. 42: 2147-2150.

DOI: 10.1016/J.PHYSE.2010.04.014.

Moradi, A. V., Peyghan, A. A., Hashemian, S. & Baei, M. T. 2012. Theoretical Study of Thiazole Adsorption on the (6,0) Zigzag Single-Walled Boron Nitride Nanotube. Bulletin of the Korean Chemical Society. 33(10): 3285-3292.

DOI: 10.5012/bkcs.2012.33.10.3285.

Kaur, J., Singala, P. & Goel N. 2015. Adsorption of Oxazole and Isoxazole on BNNT Surface: A DFT Study. Applied Surface Science. 328: 632-640. DOI: 10.1016/j.apsusc.2014.12.099.

Sotudeh, M., Boochani, A., Parhizgar, S. S. & Masharian, S. R. 2020. Optical and Electronic Properties of Zigzag Boron Nitride Nanotube (6,0): DFT Study. International Nano Letters. 10: 293-301. DOI: 10.1007/s40089-020-00314-w.

Xiang, C., Li, A., Yang, S., Lan, Z., Xie, W., Tang, Y., Xu, H., Wang, Z. & Gu. H. 2019. Enhanced Hydrogen Storage Performance of Graphene Nanoflakes Doped with Cr Atoms: A DFT Study. RSC Advances. 9: 25690-25696. DOI: 10.1039/c9ra04589a.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J.V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. 2016. Gaussian 09. Gaussian, Inc from Wallingford CT, USA.




How to Cite




Science and Engineering