MITRAGYNA SPECIOSA DYE SENSITISER AS THE LIGHT-HARVESTING MOLECULES FOR DYE-SENSITISED SOLAR CELLS

Authors

  • Azlina A. K. Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, Malaysia
  • M. H. Mamat NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Che Soh, Z. H. Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, Malaysia
  • M. F. A. Rahman Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, Malaysia
  • N. A. Othman Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, Malaysia
  • Marina M. Department of Computer and Mathematical Sciences, UiTM Cawangan Permatang Pauh, Pulau Pinang, Malaysia
  • Syarifah Adilah M. Y. Department of Applied Sciences, UiTM Cawangan Permatang Pauh, Pulau Pinang, Malaysia
  • M. H. Abdullah Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18695

Keywords:

DSSC, chlorophyll, PCE, natural dye, pH, OCVD

Abstract

In this study, natural dye sensitisers derived from ketum (Mitragyna speciosa-MS), spinach (Spinacia oleracea-SO), curry (Murraya koenigii-MK), papaya (Carica papaya-CP), and henna (Lawsonia inermis-LI) were investigated for dye-sensitised solar cells (DSSCs). Ultraviolet-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FTIR), Open-Circuit Voltage Decay (OCVD) and Current to Voltage (I-V) were used to analyse the natural dye and the fabricated DSSC. It was observed that all dye solutions contain the majority of important functional groups of chlorophyll-based sensitisers, which is crucial for the dye-to-TiO2 (Titanium (II) Oxide) attachment, making them suitable sources of energy harvesting pigments. In this regard, the dye pH and chemical bonding of the respective dyes play a significant role that contribute to the overall performance of the DSSCs. It was discovered that a dye based on MK provided the best DSSC performance. This is because MK-based dye has higher content of functional groups, an optimal pH, and the slowest properties of back electron recombination among the OCVD measurements. Because of the combination of these properties, the open-circuit voltage (VOC), short-circuit current density (JSC), and power conversion efficiency (PCE) values have been determined to be 0.58 V, 2.48 mA/cm2, and 0.47%, respectively.

References

M. Grätzel and B. O’Regan. 1991. A Low-cost, High-efficiency Solar Cell based on Dye-sensitized Colloidal TiO2 films. Nature. 353(6346): 737-740. Doi: 10.1038/353737a0.

M. Rekha, M. Kowsalya, S. Ananth, P. Vivek, and R. M. Jauhar. 2019. Current–voltage Characteristics of New Organic Natural Dye Extracted from Terminalia Chebula for Dye-sensitized Solar Cell Applications. J. Opt. 48(1): 104-112. Doi: 10.1007/s12596-018-0507-5.

M. Z. Iqbal, S. R. Ali, and S. Khan. 2019. Progress in Dye Sensitized Solar Cell by Incorporating Natural Photosensitizers. Sol. Energy. 181: 490-509. Doi: https://doi.org/10.1016/j.solener.2019.02.023.

H. El-Ghamri, T. El-Agez, S. Taya, M. Abdel-Latif, and A. Batniji. 2014. Dye-sensitized Solar Cells with Natural Dyes Extracted from Plant Seeds. Mater. Sci. 32(4): 547-554. Doi: 10.2478/s13536-014-0231-z.

K. Wongcharee, V. Meeyoo, and S. Chavadej. 2007. Dye-sensitized Solar Cell using Natural Dyes Extracted from Rosella and Blue Pea Flowers. Sol. Energy Mater. Sol. Cells. 91(7): 566-571. Doi: 10.1016/j.solmat.2006.11.005.

A. A. Khan et al. 2022. Magnesium Sulfate as a Potential Dye Additive for Chlorophyll-based Organic Sensitiser of the Dye-sensitised Solar Cell (DSSC). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 274: 121140. Doi: 10.1016/j.saa.2022.121140.

F. Hölscher, P. R. Trümper, I. Juhász Junger, E. Schwenzfeier-Hellkamp, and A. Ehrmann. 2019. Application Methods for Graphite as Catalyzer in Dye-sensitized Solar Cells. Optik (Stuttg). 178(August 2018): 1276-1279. Doi: 10.1016/j.ijleo.2018.10.123.

G. N. 2014. Natural Dye Sensitized Nanocrystalline Tio2 Thin Films for Solar Cell Applications. Anna University, Chennai, India.

A. Zdyb and E. Krawczak. 2021. Organic Dyes in Dye-sensitized Solar Cells Featuring Back Reflector. Energies. 14(17). Doi: 10.3390/en14175529.

H. Chang, M.-J. Kao, T.-L. Chen, C.-H. Chen, K.-C. Cho, and X.-R. Lai. 2013. Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells. Int. J. Photoenergy. 1-8. Doi: 10.1155/2013/159502.

O. Adedokun, Y. K. Sanusi, and A. O. Awodugba. 2018. Solvent Dependent Natural Dye Extraction and Its Sensitization Effect for Dye Sensitized Solar Cells. Optik (Stuttg). 174: 497-507. Doi: 10.1016/j.ijleo.2018.06.064.

Lakna. 2017. Difference between Chlorophyll A and B Difference Between Chlorophyll A and B Main Difference-Chlorophyll A vs Chlorophyll B. Pediaa. April [Online]. https://www.researchgate.net/publication/316584030.

W. Van Lierop. 2018. Soil pH and Lime Requirement Determination. Soil Test. Plant Anal. 9(9): 73-126. Doi: 10.2136/sssabookser3.3ed.c5.

M. I. Gunawan and S. A. Barringer. 2000. Green Color Degradation of Blanched Broccoli (Brassica Oleracea) due to Acid and Microbial Growth. J. Food Process. Preserv. 24(3): 253-263. Doi: 10.1111/j.1745-4549.2000.tb00417.x.

P. Koli and U. Sharma. 2021. Use of Pigments Present in the Crude Aqueous Extract of the Spinach for the Simultaneous Solar Power and Storage at Natural Sun Intensity. Adv. Energy Sustain. Res. 2(11): 2100079. Doi: 10.1002/aesr.202100079.

A. M. Humphrey. 2004. Chlorophyll as a Color and Functional Ingredient. J. Food Sci. 69(5). Doi: 10.1111/j.1365-2621.2004.tb10710.x.

Y. Takeda and M. Fatope. 1988. New Phenolic Glucosides from Lawsonia Inermis. J. Naural Prod. 51(4): 725-729. Doi: 10.1021/np50058a010.

M. A. Slifkin. 1973. Infrared Spectra of Some Organic Charge-transfer Complexes. Spectrochim. Acta Part A Mol. Spectrosc. 29(5): 835-838. Doi: https://doi.org/10.1016/0584-8539(73)80053-4.

M. B. Ningappa, R. Dinesha, and L. Srinivas. 2008. Antioxidant and Free Radical Scavenging Activities of Polyphenol-enriched Curry Leaf (Murraya koenigii L.) Extracts. Food Chem. 106(2): 720-728. Doi: 10.1016/j.foodchem.2007.06.057.

K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, and S. Ashokkumar. 2015. Bio-fabrication of Zinc Oxide Nanoparticles using Leaf Extract of Curry Leaf (Murraya koenigii) and Its Antimicrobial Activities. Mater. Sci. Semicond. Process. 34: 365-372. Doi: 10.1016/j.mssp.2015.01.048.

A. M. Anton et al. 2019. Photoresponsive Natural Materials. Mol. Cryst. Liq. Cryst. 695(1): 37-44. Doi: 10.1080/15421406.2020.1723904.

J. Coates. 2006. Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 1-23. Doi: 10.1002/9780470027318.a5606.

F. Kabir, S. N. Sakib, and N. Matin. 2019. Stability Study of Natural Green Dye based DSSC. Optik (Stuttg). 181(December 2018): 458-464. Doi: 10.1016/j.ijleo.2018.12.077.

S. Suyitno, T. J. Saputra, A. Supriyanto, and Z. Arifin. 2015. Stability and Efficiency of Dye-sensitized Solar Cells based on Papaya-leaf Dye. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 148: 99-104. Doi: 10.1016/j.saa.2015.03.107.

Shahrul, A. M., et al. 2022. Synergistic Role of Aluminium Sulphate Flocculation Agent as Bi-functional Dye Additive for Dye-Sensitized Solar Cell (DSSC). Optik. 258. 168945.doi.org/10.1016/j.ijleo.2022.168945.

S. Hao, J. Wu, Y. Huang, and J. Lin. 2006. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cell. Sol. Energy. 80(2,): 209-214. Doi: 10.1016/j.solener.2005.05.009.

M. B. Ningappa, B. L. Dhananjaya, R. Dinesha, R. Harsha, and L. Srinivas. 2010. Potent Antibacterial Property of APC Protein from Curry Leaves (Murraya koenigii L.). Food Chem. 118(3): 747-750. Doi: 10.1016/j.foodchem.2009.05.059.

Shahidi, Fereidoon, and Ying Zhong. 2010. Novel Antioxidants in Food Quality Preservation and Health Promotion. European Journal of Lipid Science and Technology. 112(9): 930-940. Doi.org/10.1002/ejlt.201000044

Kim, Young-Woong, and Tatiana V. Byzova. 2014. Oxidative Stress in Angiogenesis and Vascular Disease. Blood, The Journal of the American Society of Hematology. 123(5): 625-631. Doi.org/10.1182/blood-2013-09-512749.

Dizdaroglu, Miral, et al. 2002. Free Radical-induced Damage to DNA: Mechanisms and Measurement. Free Radical Biology and Medicine. 32(11): 1102-1115. doi.org/10.1016/S0891-5849(02)00826-2.

Halliwell, Barry, and John MC Gutteridge. 2015. Free Radicals in Biology and Medicine. Oxford University Press, USA.

S. Hao, P. Wu, Y. Huang, and J. Lin. 2006. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cell. Sol. Energy. 80: 209-214. Doi: 10.1016/j.solener.2005.05.009.

Suyitno, A. Zainal, A. S. Ahmad, T. S. Argatya, and Ubaidillah. 2014. Optimization Parameters and Synthesis of Fluorine Doped Tin Oxide for Dye-sensitized Solar Cells. Appl. Mech. Mater. 575: 689-695. Doi: 10.4028/www.scientific.net/AMM.575.689.

Z. Nazila and R. Rasuli. 2018. Anchored Cu2O Nanoparticles on Graphene Sheets as an Inorganic Hole Transport Layer for Improvement in Solar Cell Performance. Appl. Phys. A Mater. Sci. Process. 124(12). Doi: 10.1007/s00339-018-2229-6.

Shahrul, A. M., et al. 2022. Low-cost Coagulation Treatment of Dye Sensitizer for Improved Time Immersion of Dye-sensitized Solar Cells (DSSC). Microelectronic Engineering. 262: 111832. Doi.org/10.1016/j.mee.2022.111832.

Downloads

Published

2022-12-02

How to Cite

A. K., A., Mamat, M. H. ., Z. H., C. S. ., Rahman, M. F. A. ., Othman, N. A. ., M., M. ., M. Y., S. A. ., & Abdullah, M. H. . (2022). MITRAGYNA SPECIOSA DYE SENSITISER AS THE LIGHT-HARVESTING MOLECULES FOR DYE-SENSITISED SOLAR CELLS. Jurnal Teknologi, 85(1), 107-113. https://doi.org/10.11113/jurnalteknologi.v85.18695

Issue

Section

Science and Engineering