COOPERATIVE SOURCE DETECTION USING AN OPTIMIZED DISTRIBUTED LEVY FLIGHT ALGORITHM
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.18727Keywords:
Levy flight, source detection, source search, swarm robots, random searchAbstract
Source signal detection plays important roles in many real-world target searching problems. Source detection is necessary before a full search process utilizing the detected signal can be performed where minimizing the detection time and maximizing the search space exploration or coverage are the main problems. In this paper, an optimized Levy Flight algorithm known as a Distributed Levy Flight (DLF) for swarm agents is proposed. The DLF algorithm is optimized by means of repulsive artificial potential force to disperse the agents in order to optimize the search space coverage and detection time. Additionally, to integrate cooperative behavior, an artificial attractive force is used to maintain communication among the agents. The results showed that the proposed DLF algorithm successfully improve detection time (113.1s) and area coverage (78.3%) compared to the existing algorithms: Brownian Walk (325.5s, 31.7%), Correlated Random Walk (356.2s, 35.1%), Levy Flight (201.3s, 56.6%), Levy Flight with Artificial Potential Fields (151.9s, 70.2%).
References
Senanayake, M., I. Senthooran, J. C. Barca, H. Chung, J. Kamruzzaman, and M. Murshed. 2016. Search and Tracking Algorithms for Swarms of Robots: A Survey. Robotics and Autonomous Systems. 75: 422-434.
Doi: https://doi.org/10.1016/j.robot.2015.08.010.
Wang, T.-M., Y. Tao, and H. Liu. 2018. Current Researches and Future Development Trend of Intelligent Robot: A Review. International Journal of Automation and Computing. 15(5): 525-546.
Doi: https://doi.org/10.1007/s11633-018-1115-1.
Sun, X., Y. Zhang, and J. Chen. 2019. High-level Smart Decision Making of a Robot Based on Ontology in a Search and Rescue Scenario. Future Internet. 11(11): 230. Doi: https://doi.org/10.3390/fi11110230.
Ismail, Z. H., and M. G. M. Hamami. 2021. Systematic Literature Review of Swarm Robotics Strategies Applied to Target Search Problem with Environment Constraints. Applied Sciences. 11(5): 2383.
Doi: https://doi.org/10.3390/app11052383.
Majid, M. H. A., and M. R. Arshad. 2017. Cooperative Underwater Acoustic Source Searching based on Adaptive PSO Algorithm. IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS). Kuala Lumpur, Malaysia. 18-20 December 2017. 1-6.
Doi: https://doi.org/10.1109/USYS.2017.8309449.
Yang, J., R. Xiong, X. Xiang, and Y. Shi. 2020. Exploration Enhanced RPSO for Collaborative Multitarget Searching of Robotic Swarms. Complexity. 2020: 8863526-886338.
Doi: https://doi.org/10.1155/2020/8863526.
Yang, J., X. Wang, and P. Bauer. 2019. Extended PSO Based Collaborative Searching for Robotic Swarms with Practical Constraints. IEEE Access. 7: 76328-76341.
Doi: https://doi.org/10.1109/ACCESS.2019.2921621.
Dadgar, M., S. Jafari, and A. Hamzeh. 2016. A PSO-based Multi-robot Cooperation Method for Target Searching in Unknown Environments. Neurocomputing. 177: 62-74.
Doi: https://doi.org/10.1016/j.neucom.2015.11.007.
Lee, J. W., N. T. Tang, K. G. Lim, M. K. Tan, B. Yang, and K. T. K Teo. 2019. Enhancement of Ant Colony Optimization in Multi-Robot Source Seeking Coordination. IEEE 7th Conference on Systems, Process and Control (ICSPC). Melaka, Malaysia. 13-14 December 2019. 200-205.
Doi: https://doi.org/10.1109/ICSPC47137.2019.9068065.
Zhang, X., and M. Ali. 2020. A Bean Optimization-based Cooperation Method for Target Searching by Swarm UAVs in Unknown Environments. IEEE Access. 8: 43850-43862. Doi: https://doi.org/10.1109/ACCESS.2020.2977499.
Jiang, L., and P. Tian. 2021. A Bacterial Chemotaxis-Inspired Coordination Strategy for Coverage and Aggregation of Swarm Robots. Applied Sciences. 11(3): 1347-1366.
Doi: https://doi.org/10.3390/app11031347.
Peng, X., S. Zhang, and L. Xiaokang. 2016. Multi-target Trapping in Constrained Environments using Gene Regulatory Network-based Pattern Formation. International Journal of Advanced Robotic Systems. 13(5): 1729881416670152.
Doi: https://doi.org/10.1177/1729881416670152.
Huang, X. 2020. Improved ‘Infotaxis’ Algorithm-based Cooperative Multi-USV Pollution Source Search Approach in Lake Water Environment. Symmetry. 12(4): 549-567.
Doi: https://doi.org/10.3390/sym12040549.
Pablo, G.-A., C. Jaime del, and A. Barrientos. 2019. Behavior-based Control for an Aerial Robotic Swarm in Surveillance Missions. Sensors. 19(20): 4584.
Doi: https://doi.org/10.3390/s19204584.
Majid, M. H. A., and M. R. Arshad. 2017. A Combined Systematic and Metaheuristic Approach for Cooperative Underwater Acoustic Source Localization by a Group of Autonomous Surface Vehicles. Indian Journal of Geo-Marine Sciences. 46(12): 2434-2443.
Doi: http://nopr.niscpr.res.in/handle/123456789/43189.
Pang, B., Y. Song, C. Zhang, and R. Yang. 2021. Effect of Random Walk Methods on Searching Efficiency in Swarm Robots for Area Exploration. Applied Intelligence. 51(7): 5189-5199.
Doi: https://doi.org/10.1007/s10489-020-02060-0.
Dimidov, C., G. Oriolo, and V. Trianni. 2016. Random Walks in Swarm Robotics: An Experiment with Kilobots. Swarm Intelligence. ANTS 2016. In Lecture Notes in Computer Science. Springer, Cham.
Doi: https://doi.org/10.1007/978-3-319-44427-7_16.
Ramachandran, R., Z. Kakish, and S. Berman. 2020. Information Correlated Lévy Walk Exploration and Distributed Mapping Using a Swarm of Robots. IEEE Transactions on Robotics. 36(5): 1422-1441.
Doi: https://doi.org/10.1109/TRO.2020.2991612.
Zaburdaev, V., S. Denisov, and J. Klafter. 2015. L'evy Walks. Reviews of Modern Physics. 87(2): 483-530.
Doi: https://doi.org/10.1103/RevModPhys.87.483.
Katada, Y., et al. 2016. Swarm Robotic Network using Lévy Flight in Target Detection Problem. Artif Life Robotics. 21: 295-301.
Doi: https://doi.org/10.1007/s10015-016-0298-1.
Khaluf, Y., S. Van Havermaet, and P. Simoens. 2018. Collective Lévy Walk for Efficient Exploration in Unknown Environments. 18th International Conference on AIMSA. Varna, Bulgaria. 12–14 September 2018. 260-264.
Doi: https://doi.org/10.1007/978-3-319-99344-7_24.
Majid, M. H. A., and M. R. Arshad. 2019. Search Space Exploration using Lévy Flight with Turning Angle Constraint and Boundary Reflection. 22nd International Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines. Kuala Lumpur, Malaysia. 26-28 August 2018. 133-140.
Doi: https://doi.org/10.13180/clawar.2019.26-28.08.18
Palyulin, V. V., A. V. Chechkin, and R. Metzler. 2014. Lévy Flights do not Always Optimize Random Blind Search for Sparse Targets. Proceedings of the National Academy of Sciences. 111(8): 2931-2936.
Doi: https://doi.org/10.1073/pnas.1320424111.
Majid, M. H. A., and M. R. Arshad. 2016. Design of an Autonomous Surface Vehicle (ASV) for Swarming Application. IEEE/OES Autonomous Underwater Vehicles (AUV). Tokyo, Japan. 6-9 November 2016. 230-235.
Doi: https://doi.org/10.1109/AUV.2016.7778676.
E. W. McGookin. 2001. AUV Sliding Mode Autopilot Optimisation Using Genetic Algorithms. IFAC Proceedings. 34: 317-322.
Doi: https://doi.org/10.1016/S1474-6670(17)35102-9.
Keeter, M., D. Moore, R. Muller, E. Nieters, J. Flenner, S. E. Martonosi, A. L. Bertozzi, A. G. Percus, and R. Levy. 2012. Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed. American Control Conference (ACC). Montreal, QC, Canada. 27-29 June 2012. 3154-3160.
Doi: https://doi.org/10.1109/ACC.2012.6314965.
Sutantyo, D. K., S. Kernbach, P. Levi, V. A. Nepomnyashchikh. 2010. Multi-robot Searching Algorithm using L´evy Flight and Artificial Potential Field. IEEE Safety Security and Rescue Robotics. Bremen, Germany. 26-30 July 2010. 1-6.
Doi: https://doi.org/10.48550/arXiv.1108.5624.
Cao, M.-L., M. Hao, B. Luo, and M. Zeng. 2015. Experimental Comparison of Random Search Strategies for Multi-robot based Odour Finding without Wind Information. Austrian Contributions to Veterinary Epidemiology. 8: 43-50.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.