C+L BAND SOA MULTI-WAVELENGTH LASER WITH THE VARIATION OF OPTICAL COUPLING RATIOS

Authors

  • F. B. M. Ibrahim ᵃFaculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600 Arau, Perlis, Malaysia ᵇCentre of Excellence for Micro Systems Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Perlis, Malaysia
  • N. A. M. Ahmad Hambali ᵃFaculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600 Arau, Perlis, Malaysia ᵇCentre of Excellence for Micro Systems Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Perlis, Malaysia https://orcid.org/0000-0002-5824-3764
  • M. H. A. Wahid ᵃFaculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600 Arau, Perlis, Malaysia ᵇCentre of Excellence for Micro Systems Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Perlis, Malaysia
  • N. Ali ᵃFaculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600 Arau, Perlis, Malaysia ᵇCentre of Excellence for Micro Systems Technology (MiCTEC), Universiti Malaysia Perlis (UniMAP), Arau, 02600, Perlis, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18730

Keywords:

C L band, Multi-wavelength laser, Semiconductor optical amplifier, Optical coupling ratios

Abstract

This paper presents the characteristics of C+L band semiconductor optical amplifier based multi-wavelength laser with the variation of output optical coupling ratios. The configuration was tested with different coupling ratios from 10% to 90%. Meanwhile, the semiconductor optical amplifier injection currents varied from 110 mA to 340 mA in a step of 10 mA. The optimum coupling ratios were observed at 30%, 40%, 50% and 60% since it produces the maximum number of lasing lines, optical signal-to-noise ratio and average peak power. These coupling ratios also correspond to the minimum drive current of the semiconductor optical amplifier that initiates the first lasing lines. At 60% of the coupling ratio and injection current of 280 mA, the multi-wavelength laser has the capability to generate up to 42 dominant lasing lines with average peak power from -21 dBm to -35 dBm and an average optical signal-to-noise ratio from 9 dB to 11 dB. Furthermore, the minimum semiconductor optical amplifier current of 110 mA was required to initiate the first lasing at 60% of the coupling ratio. The semiconductor optical amplifier can effectively and practically act as a multi-wavelength source, especially in optical sensing and communication.

References

Ismail, A. Sulaiman, A. H. Jamaludin, M. Z. Abdullah, F. 2019. Overview of Multi-wavelength Laser Generation Techniques. International Journal of Advanced Science and Technology. 28: 227-232.

Wang, H. Liu, C. Su, X. Wang, Y. Xie, Y. Gao, F. Kumar, S. Zhang, B. 2022, Dual-wavelength Mode-locked Laser based on Optimization of Erbium-doped Fiber Length. Optik. 251: 168370.

https://doi.org/10.1016/j.ijleo.2021.168370.

Bai, W. Zou, X. Li, P. Pan, W. Yan, L. Luo, B. Lu, X. 2020, A WDM-PON Compatible Wavelength-reused Bidirectional In-band Full-duplex Radio-over-fiber System. Optics Communications. 463: 125408

Doi: 10.1016/j.optcom.2020.125408.

Baziana, P. A. 2019. Resource Allocation Mechanism for Efficiency Improvement in WDM Networks: An Analytical Comparison Study. Optical Switching and Networking. 33: 15-24.

https://doi.org/10.1016/j.osn.2019.02.002.

Haoa, H. T. Zhoua, X. F. Bia, M. H. Hua,M. Yang, G. W. Lua, Y. Wang, T. S. 2020. Wavelength-number-tunable Multi-wavelength SOA Fiber Laser based on NPR Effect. Optical Fiber Technology.58: 102296.

https://doi.org/10.1016/j.yofte.2020.102296.

Shang, J. Wang, Z. Li, S. Zhu, E. Yu, S. Qiao, Y. 2022. Tunable Narrow Linewidth Linear Cavity Fiber Laser based on a One-way Round-trip Structure. Optical Fiber Technology. 68: 102780.

https://doi.org/10.1016/j.yofte.2021.102780.

Ahmad, A., Roslan, N. A., Zaini, M. K. A., Samion, M. Z. 2022. Tunable Multiwavelength Erbium-doped Fiber Laser based on In-fiber Fabry-Perot Interferometer Fiber Bragg Gratings in Linear and Ring Cavity Configurations. Optik. 262(2022): 169359.

https://doi.org/10.1016/j.ijleo.2022.169359.

Gao, S. Jing, Z. Chen, H. 2020. A Stable Three-wavelength Ring-cavity Laser based on SOA with Two FBGs and a DFB Laser Injection. Optics & Laser Technology. 130: 106362.

https://doi.org/10.1016/j.optlastec.2020.106362.

Ehsan, E. Ngah, R. Daud, N. A. 2022. A 1.792 Tbps RoF-based PDM-DQPSK DWDM System for High-capacity Long-haul 5 G and Beyond Optical Network. Optik. 269: 169858.

https://doi.org/10.1016/j.ijleo.2022.169858.

Muridan, N. Sulaiman, A. H. Abdullah, F. Yusoff, N. M. 2021. Effect of Polarization Adjustment Towards the Performance of SOA-based Multi-wavelength Fiber Laser. Optik. 2: 167007.

https://doi.org/10.1016/j.ijleo.2021.167007.

Sun, J. 2004. Multiwavelength Ring Lasers Employing Semiconductor as Gain Media. Microwave and Optical Technology Letters. 43: 301-303.

https://doi.org/10.1002/mop.20451.

Ahmad, H. Sulaiman, H. Shahi, A. H. S. and Harun, S. W. 2009. SOA-Based Multi-Wavelength Laser Using Fiber Bragg Gratings. Fiber Optics. 19: 1002-1005.

https://doi.org/10.1134/S1054660X09050193.

Mookran, N. A. N. M. Ahmad Hambali, N. A. M. M. Wahid, M. A. Shahimin, M. M. Mahdi, M. A. 2018, Triple Wavelength Fiber Laser Employing SOA Incorporated with a Tapered Fiber. Proceeding SPIE 10662, Smart Biomedical and Physiological Sensor Technology XV. 106620S.

https://doi.org/10.1016/j.optcom.2007.07.027.

Ahmad, H. Zainudin,F. M. Azmi, A. N. Thambiratnam, K. Ismail, M, Aminah, N. S. Zulkifli, M. Z. 2019. Compact L-Band Switchable Dual Wavelength SOA based on Linear Cavity Fiber Laser. Optik. 182: 37-41.

https://doi.org/10.1016/j.ijleo.2019.01.003.

Hambali, N. A. M. A. Mahdi, M. A. Al-Mansoori, M. H. Saripan, M. I. and Abas, A. F. 2009. Optimization of Output Coupling Ratio on the Performance of a Ring-cavity Brillouin-erbium Fiber Laser. Applied Optics. 48: 5055-5060.

https://doi.org/10.1364/AO.48.005055.

Mookran, N. A. N. M, Hambali, N. A. M. A, Wahid, M. H. A, Shahimin, M. M. Isa S. S. M and Mahdi, M. 2018. A. Single Wavelength Fiber Laser Employing SOA Incorporating with a Tapered Fiber. AIP Conference Proceedings 2045. 020043.

https://doi.org/10.1063/1.5080856.

Husshini, N. F. H. Hambali, N. A. M. A. Wahid, M. H. A. Shahimin, M. M. Yasin, M. N. M. Ali, N and AL-Asadi, H. A. A. 2020. Characteristics of Multiwavelength Fiber Laser Employing Semiconductor Optical Amplifier in Nonlinear Optical Loop Mirror with Different Length Polarization Maintaining Fiber. AIP Conference Proceedings 2203. 020029.

https://doi.org/10.1063/1.5142121.

Husshini, N. F. Hambali, N. A. M. A. Wahid, M. H. A. Shahimin, M. M. Yasin M. N. M Ali, N. AL-Asadi, H. A. A. and Raghavendra, C. G. 2020. Multiwavelength Fiber Laser Employing Semiconductor Optical Amplifier in Nonlinear Optical Loop Mirror with Polarization Controller and Polarization Maintaining Fiber. AIP Conference Proceedings 2203. 020030

https://doi.org/10.1063/1.5142122.

Zhou, X. Hao, H. Bi, M. Yang, G. and Hu, M. 2020. Multi-Wavelength SOA Fiber Laser with Ultra-Narrow Wavelength Spacing Based on NPR Effect. IEEE Photonics Journals. 12: 1-8.

Doi: 10.1109/JPHOT.2020.3024104

Prakash, A, Kar, S. 2022. Graph Wavelets for Fault Localization in Optical Mesh Networks. Optical Fiber Technology. 72: 103006,

https://doi.org/10.1016/j.yofte.2022.103006.

Chong, S. S. Ahmad, H. Zulkifli, M. Z. Latif, A. A. Chong, W. Y. Harun, S. W. 2012. Synchronous Tunable Wavelength Spacing Dual-wavelength SOA Fiber Ring Laser using Fiber Bragg Grating Pair in a Hybrid Tuning Package. Optics Communications. 285: 1326-1330.

https://doi.org/10.1016/j.optcom.2011.10.044x.

Sulaiman, A. H. Zamzuri, A. K. Hitam, S. Abas, M. A. Mahdi, M. A. 2013. Flatness Investigation of Multi-wavelength SOA Fiber Laser based on Intensity-dependent Transmission Mechanism. Optics Communications. 291: 264-268.

https://doi.org/10.1016/j.optcom.2012.10.078.

Liu, D. Liu, H and Sun, Q. 2010. The Design of SOA-based Multiwavelength Fiber Ring Laser for Fiber Sensing Network, Z. Sun. Computer and Information Science. 3: 47-51.

Doi: 10.5539/cis.v3n2p47.

Abdul Hadi Sulaiman, Nelidya Md Yusoff, Muhammad Zamzuri Abdul Kadir, Fairuz Abdullah, Noran Azizan Cholan, Yasmin Mustapha Kamil, Mohd Adzir Mahdi. 2020. Investigation on Factors Influencing Flatness of a Bidirectional SOA-based Multiwavelength Fiber Laser. Infrared Physics & Technology. 112(202): 103593.

https://doi.org/10.1016/j.infrared.2020.103593.

Ahmad, H. Ooi, H. C. Sulaiman, A. H. Thambiratnam, K. Zulkifli, M. Z. and Harun, S. W. 2008. SOA based Fibre Ring Laser with Fibre Bragg Grating. Microwave and Optical Technology Letters. 50: 3101-3103.

https://doi.org/10.1002/mop.23895.

Wang, Z. Shang, J. Li, S, Mu, K. Qiao, Y. Yu, S. 2021. All-polarization Maintaining Single-longitudinal-mode Fiber Laser with Ultra-high OSNR, Sub-KHz Linewidth and Extremely High Stability. Optics & Laser Technology. 141: 107135.

https://doi.org/10.1016/j.optlastec.2021.107135.

Sulaiman, A. H. Yusoff, N. M. Abdullah, F. Mahdi, M. A. 2020. Tunable Multi-wavelength Fiber Laser based on Bidirectional SOA in Conjunction with Sagnac Loop Mirror Interferometer. Results in Physics. 18: 103301.

https://doi.org/10.1016/j.rinp.2020.103301.

Sulaiman, H. Yusoff, N. M. Kadir, M. Z. A. Abdullah, F. Cholan, N. A. Kamil, Y. M. Mahdi, M. A. 2021. Investigation on Factors Influencing Flatness of a Bidirectional SOA-based Multi-wavelength Fiber Laser. Infrared Physics & Technology. 2: 103593.

https://doi.org/10.1016/j.infrared.2020.103593.

Sulaiman, A. H. Yusoff, N. M. Abdullah, F. Mahdi, M. A. 2020. Tunable Multiwavelength Fiber Laser based on Bidirectional SOA in Conjunction with Sagnac Loop Mirror Interferometer. Results in Physics. 18: 103301.

https://doi.org/10.1016/j.rinp.2020.103301.

Downloads

Published

2022-12-21

Issue

Section

Science and Engineering

How to Cite

C+L BAND SOA MULTI-WAVELENGTH LASER WITH THE VARIATION OF OPTICAL COUPLING RATIOS. (2022). Jurnal Teknologi, 85(1), 149-158. https://doi.org/10.11113/jurnalteknologi.v85.18730