DETERMINATION OF PETROPHYSICAL PROPERTIES CUTOFF IN HETEROLITHIC RESERVOIRS IN MALAY BASIN

Authors

  • Stanley Jaul Kampit KUFPEC Malaysia, Level 33 Menara Permata Sapura, KLCC, 50088 Kuala Lumpur, Malaysia https://orcid.org/0000-0003-2722-4306
  • Samira Albati Kamaruddin Department of Engineering and Technology Razak Faculty of Technology and Informatics Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia https://orcid.org/0000-0003-1746-033X
  • Akhmal Sidek Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia https://orcid.org/0000-0003-4297-552X
  • Rodziah Rejab KUFPEC Malaysia, Level 33 Menara Permata Sapura, KLCC, 50088 Kuala Lumpur, Malaysia
  • Zulkarnain Anas KUFPEC Malaysia, Level 33 Menara Permata Sapura, KLCC, 50088 Kuala Lumpur, Malaysia
  • Mohd Nor Hisham Mohd Azam Petrofac Malaysia Ltd, Level 28, Menara Prestige 1 Jalan Pinang 50450 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18745

Keywords:

MDT pressure test, reservoir characterization, petrophysical cutoff, formation evaluation, heterolithic sand

Abstract

Thinly bedded sand-shale heterolithic are commonly found as a marginal reservoir in the Malay Basin. In the evaluation of heterolithic reservoirs, a key challenge is to determine the appropriate petrophysical properties cutoff. This study used the Modular Dynamic Tester (MDT) pressure tests to determine the appropriate petrophysical properties cutoff applicable to heterolithic intervals. Intrinsic permeability analysis and MDT mobility plots were used to determine the cutoffs for shale volume and total porosity. Subsequently, hydrocarbon pore volume thickness (with shale volume and porosity cutoff applied) was plotted against water saturation to determine the water saturation cut-off value. In this case study, the reservoir cutoffs applied are shale volume less than 60% and total porosity in excess of 12 %. The hydrocarbon pay cutoff was set at a water saturation less than 85 %.

References

Kantaatmadja, B., Nurhono, A. A., Bt A Majid, R., B Amdan, A. 2014. Unlock Hydrocarbon Volumetric Potential of LRLC Clastic Reservoirs in Malaysian Basins. International Petroleum Technology Conference. OnePetro.

DOI: https://doi.org/10.2523/IPTC-18236-MS.

Lee, E. T. H. 2013. Scope for improvement: Malaysia's Oil and Gas Sector. Research for Social Advancement.

Madon, M. 2021. Five Decades of Petroleum Exploration and Discovery in the Malay Basin (1968-2018) and Remaining Potential. Bulletin of the Geological Society of Malaysia. 72.

DOI: https://doi.org/10.7186/bgsm72202106.

Almoqaddam, R. O., Darwish, M., El-Barkooky, A. N., & Clerk, C., 2018. Sedimentary Facies Analysis of the Upper Bahariya Sandstone Reservoir in East Bahariya C Area, North Western Desert, Egypt. Egyptian Journal of Petroleum. 27(4): 1103-1112.

Dowey, P. J., Worden, R. H., Utley, J. and Hodgson, D. M. 2017. Sedimentary Controls on Modern Sand Grain Coat Formation. Sedimentary Geology. 353: 46-63.

DOI: https://doi.org/10.1016/j.sedgeo.2017.03.001.

Massart, B. Y. G. 2014. Improved Characterisation and Modelling of Heterolithic Tidal Sandstone Reservoirs. Doctoral Dissertation. Imperial College London. 39 -108.

DOI: https://doi.org/10.25560/24995.

Morad, S., Al-Ramadan, K., Ketzer, J. M. and De Ros, L. F., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin. 94(8): 1267-1309.

DOI: https://doi.org/10.1306/04211009178.

Saïag, J., Brigaud, B., Portier, É., Desaubliaux, G., Bucherie, A., Miska, S. and Pagel, M. 2016. Sedimentological Control on the Diagenesis and Reservoir Quality of Tidal Sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Marine and Petroleum Geology. 77: 597-624.

DOI: https://doi.org/10.1016/j.marpetgeo.2016.07.002.

Petitpierre, L., Frohlich, S., Bodin, S., Grech, P. V., Lang, S., Vachtman, D., Redfern, J. 2021. Sharp-based Shoreface Sandstones in the Early Carboniferous Sediments of the Awaynat Wanin Area (western Libya). Journal of African Earth Sciences. 178: 104168.

DOI: https://doi.org/10.1016/j.jafrearsci.2021.104168.

Virolle, M., Brigaud, B., Luby, S., Portier, É., Féniès, H., Bourillot, R., Patrier, P., Beaufort, D., 2019. Influence of Sedimentation and Detrital Clay Grain Coats on Chloritized Sandstone Reservoir Qualities: Insights from Comparisons between Ancient Tidal Heterolithic Sandstones and a Modern Estuarine System. Marine and Petroleum Geology. 107: 163-184.

DOI: https://doi.org/10.1016/j.marpetgeo.2019.05.010.

Griffiths, J. 2018. Mineralogical and Textural Variation in Modern Estuarine Sands: Implications for Sandstone Reservoir Quality. The University of Liverpool (United Kingdom).

Ezabadi, M. G., Ramli, A. S., Ataei, A. and Othman, T. R., 2015. Challenges in Modeling of High Clay Volume Gas Reservoir with No Water Production. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. OnePetro.

DOI: https://doi.org/10.2118/176251-MS.

Hasnan, H. K., Sheppard, A., Hassan, M. H. A., Knackstedt, M., and Abdullah, W. H. 2020. Digital Core Analysis: Improved Connectivity and Permeability Characterization of Thin Sandstone Layers in Heterolithic Rocks. Marine and Petroleum Geology. 120: 104549.

DOI: https://doi.org/10.1016/j.marpetgeo.2020.104549.

Verma, A., Shukla, U. K. 2020. Heterolithic Lower Rewa Sandstone of the Neoproterozoic Rewa Group, Vindhyan Basin, UP, India: An Example of Tidal Point Bar. Precambrian Research. 350: 105932.

DOI: https://doi.org/10.1016/j.precamres.2020.105932.

Petronas. Research, Scientific Services, & Petronas. Petroleum Management Unit. 1999. The Petroleum Geology and Resources of Malaysia. Petronas.

Chong, E. E., Azam, M. N., James, P. B., Rae, S. F. and Flew, S. 2017. Application of Thin-bed Analysis in Reservoir Modelling to Unlock Further Development Potential of Thinly-bedded Marginal Reservoirs. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. OnePetro.

DOI: https://doi.org/10.2118/186425-MS.

Jackson, M. D., Yoshida, S., Muggeridge, A. H., & Johnson, H. D. 2005. Three-dimensional Reservoir Characterization and Flow Simulation of Heterolithic Tidal Sandstones. AAPG Bulletin. 89(4): 507-528.

DOI: https://doi.org/10.1306/11230404036.

Singh, V., Yemez, I., & Sotomayor, J. 2013. Key Factors Affecting 3D Reservoir Interpretation and Modelling Outcomes: Industry Perspectives. British Journal of Applied Science & Technology. 3(3): 376.

DOI: https://doi.org/10.9734/BJAST/2014/3089.

Riegel, H., Balsamo, F., Mattioni, L., Tondi, E. 2019. Petrophysical Properties and Microstructural Analysis of Faulted Heterolithic Packages: A Case Study from Miocene Turbidite Successions, Italy. Geofluids, 2019.

DOI: https://doi.org/10.1155/2019/9582359.

Martinius, A. W., Ringrose, P. S., Brostrøm, C., Elfenbein, C., Næss, A., and Ringås, J. E. 2005. Reservoir Challenges of Heterolithic Tidal Sandstone Reservoirs in the Halten Terrace, Mid-Norway. Petroleum Geoscience. 11(1): 3-16.

DOI: https://doi.org/10.1144/1354-079304-629.

Belhouchet, H. E., Benzagouta, M. S., Dobbi, A., Mazouz, E., Achi, N., Duplay, J., and Khodja, M. 2021. Reservoir Compartmentalization and Fluid Property Determination using a Modular Dynamic Tester (MDT): Case Study of an Algerian Oil Field. Euro-Mediterranean Journal for Environmental Integration. 6(1): 1-13.

DOI: https://doi.org/10.1007/s41207-020-00216-5.

Grayson, S. T., Morris, C. W. and Blume, C. R. 2000. Fluid Identification and Pressure Transient Analysis in the Fractured Monterey Using The Modular Dynamics Tester. SPE/AAPG Western Regional Meeting. OnePetro.

DOI: https://doi.org/10.2118/62532-MS.

Anderson, B. J., Wilder, J. W., Kurihara, M., White, M. D., Moridis, G. J., Wilson, S. J., Pooladi-Darvish, M., Masuda, Y., Collett, T. S., Hunter, R. B. and Narita, H. 2008. Analysis of Modular Dynamic Formation Test Results from the Mount Elbert 01 Stratigraphic Test Well, Milne Point Unit, North Slope, Alaska. British Columbia, Canada.

Aghli, G., Moussavi-Harami, R. and Mohammadian, R., 2020. Reservoir Heterogeneity and Fracture Parameter Determination using Electrical Image Logs and Petrophysical Data (A Case Study, Carbonate Asmari Formation, Zagros Basin, SW Iran). Petroleum Science. 17(1): 51-69.

DOI: https://doi.org/10.1007/s12182-019-00413-0.

Haldia, B. S., Singh, S., Bhanja, A. K., Samanta, A. and DEO, P. 2013. A New Approach to Determine T 2 Cutoff Value with Integration of NMR, MDT Pressure Data in TS-V Sand of Charali Field. 10th Biennial International Conference & Exposition. P013.

Xu, W., Zhang, X., Shang, F., Fang, L., Liu, J. and Yang, X. 2018. An Integrated Quantitative Approach for Determination of Net Reservoir Cutoffs: A Case Study of Q Oil Field, Lake Albert, Uganda. Journal of African Earth Sciences. 145: 261-266.

DOI: https://doi.org/10.1016/j.jafrearsci.2018.05.007.

Fitrio, D., Oentoe, R. and Nomura, M. 2016. Successful MDT Dual Packer Survey for Cut-off Determination in the Abadi Field: Design, Execution, and Analysis.

Tangyan, L., Zaitian, M., Junxiao, W. and Hongzhi, L. 2005. Integrating MDT, NMR Log and Conventional Logs for One-well Evaluation. Journal of Petroleum Science and Engineering. 46(1-2): 73-80.

DOI: https://doi.org/10.1016/j.petrol.2004.09.001.

Esmaeilpour, S. and Ispas, I. 2021. June. Pore Pressure Estimation Using Seismic Inversion and Mdt Data. 55th US Rock Mechanics/Geomechanics Symposium. OnePetro.

Chen, J. 2013. Lithofacies Classification: From Sedimentologic Analysis to 3D Reservoir Modelling. International Petroleum Technology Conference. OnePetro.

DOI: https://doi.org/10.2523/16502-MS.

Qassamipour, M., Khodapanah, E. and Tabatabaei-Nezhad, S. A. 2020. Determination of Cutoffs by Petrophysical Log Data: A New Methodology Applicable to Oil and Gas Reservoirs. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1-14.

DOI: https://doi.org/10.1080/15567036.2020.1759733.

EPIC. 1994. Generalised stratigraphy, Hydrocarbon Occurences, and Structural History of the Malay Basin. PETRONAS, 1994. The Petroleum Geology and Resources of Malaysia. 182.

Madon, M., Yang, J. S., Abolins, P., Hassan, R. A., Yakzan, A. M. and Zainal, S. B. 2006. Petroleum Systems of the Northern Malay Basin.

HIS. 2022. https://my.ihs.com/Energy/Products (accessed 7 March 2022).

Madon, M., Peter Abolins, Mohammad Jamaal Hoesni & Mansor Bin Ahmad. 1999. Malay Basin. In: PETRONAS The Petroleum Geology and Resources of Malaysia Chapter 8, 171-217.

Herron, M. M. 1987. Estimating the Intrinsic Permeability of Clastic Sediments from Geochemical Data. SPWLA 28th Annual Logging Symposium. OnePetro.

Abbasi, S., Singh, T. N. and Pritchard, T. 2016. Error and Impact of Porosity-permeability Transform in Tight Reservoir. Journal of Natural Gas Science and Engineering. 35: 354-361.

DOI: https://doi.org/10.1016/j.jngse.2016.08.055.

Ebong, M. and Onyekonwu, M. 2014. Determination of Cutoffs and Implications in Integrated Reservoir Studies. SPE Nigeria Annual International Conference and Exhibition. OnePetro.

DOI: https://doi.org/10.2118/172436-MS.

Downloads

Published

2023-02-23

Issue

Section

Science and Engineering

How to Cite

DETERMINATION OF PETROPHYSICAL PROPERTIES CUTOFF IN HETEROLITHIC RESERVOIRS IN MALAY BASIN. (2023). Jurnal Teknologi (Sciences & Engineering), 85(2), 11-19. https://doi.org/10.11113/jurnalteknologi.v85.18745