Phylogenetic Abnalysis of Malaysian Pineapples Cultivars Based on the DNA Sequence of the Internal Transcribed Spacer Region

Authors

  • Topik Hidayat Department of Biological Sciences, Faculty Bioscience and Bioengineering,UniversitiTeknologi Malaysia, Johor Bahru, Malaysia
  • K. Chandrika Department of Biological Sciences, Faculty Bioscience and Bioengineering,UniversitiTeknologi Malaysia, Johor Bahru, Malaysia
  • A. Farah Izana Department of Biology Education and Indonesia University of Education (UPI), Jalan Dr Setiabudi 229 Bandung 40154, Indonesia
  • S. A. Azman Department of Industrial Biotechnology, Faculty of Bioscience and Bioengineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
  • W. Alina Department of Industrial Biotechnology, Faculty of Bioscience and Bioengineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

DOI:

https://doi.org/10.11113/jt.v62.1878

Keywords:

Ananas comosus, Bromeliaceae, ITS region, Malaysian pineapple cultivars, molecular phylogenetic

Abstract

The phylogenetic study was conducted to determine the phylogenetic status and evolutionary relationships among the nine commercial pineapple cultivars using sequences of the internal transcribed spacer (ITS) region. Genomic DNA was extracted, and the ITS region was amplified and sequenced. Parsimony analysis revealed that Malaysian cultivars could be classified into two major groups based on the ITS region. The first group comprised of the cultivars Sarawak Green Local, Gandul, and N36 whereas the second group consisted of the cultivars Josapine, Yankee, Morris Bentanggur, Morris Gajah, MD2 and MD2/T. Several combinations of synapomorphic characters (leaf and fruit) support this classification system, suggesting the ITS region has the ability to determine the phylogenetic status and relationships of pineapple cultivars. Since each group has its own similar genetic pattern and presumably certain specific biochemical properties, the relationships of pineapple cultivars revealed in the phylogenetic tree can be used as a basis for successful hybridizations to generate new pineapple cultivars.

References

S. Sripaorya, N. W. Blackhall, R. Marchant, J. B. Power, K. C. Lowe, M. R. Davey. 2001. Relationship In Pineapple By Random Amplified Polymorphic DNA (RAPD) Analysis. Plant Breed. 120: 265–267.

M. F. Duval, J. L. Noyer, X. Perrier, G. C. D’eeckenbrugge, P. Hamon. 2001. Molecular Diversity in Pineapple Assessed by RFLP Markers, Theor Appl Genet. 102: 83–90.

B. G. Baldwin, M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, et al. 1995. The ITS region of Nuclear Ribosomal DNA: A Valuable Source Of Evidence On Angiosperm Phylogeny, Annals of the Missouri Botanical Garden. 82(2): 247–277.

W. J. Kress, K. J. Wurdack, A. Z. Elizabeth, L. A. Weigt, D. H. Janzen. 2005. Use of DNA Barcodes To Identify Flowering Plants. The National Academy of Sciences. Plant Bio.

R. K. Hambry, E. A. Zimmer. 1992. Ribosomal RNA as a Phylogenetic Tool in Plant Systematic. In: Soltis, P.S., Soltis, D.E., Doyle, J. J. (Eds.). Molecular Systematics of Plants. 50–91.

B. G. Baldwin. 1992. Phylogenetic Utility Of The Internal Transcribed Spacers Of Nuclear Ribosomal DNA in Plants: An Example From the Compositae, Molecular Phylogenetics And Evolution. 1(1): 3–16.

J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, D. G. Higgins. 1997. The Clustalx-Windows Interface: Flexible Strategies for Multiple Alignments Through Sequence Alignment Aided by Quality Analysis Tools, Nuc. Acids Res. 25: 4876–4882.

T. Hidayat, A. Pancoro. 2008. Kajian Filogenetika Molecular Dan Perananya Dalam Menyediakan Informasi Dasar Untuk Meningkatkan Kualitas Sumber Genetik Anggrek. J Agrobiogen. 4(1): 35–40.

R. G. Terry, G. K. Brown, R. G. Olmstead. 1997. Examination of Subfamilial Phylogeny in Bromeliaceae Using Comparative Sequencing of The Plastid Locus Ndhf. Amer J Bot. 84(5): 664–670.

T. Hidayat, D. K. Kusumawaty, D.D. Yati, A.M. Agusthina, D. Mariana. 2008. Analisis Filogenetik Molekuler Pada Phyllanthus niruri (Euphorbiaceae) Menggunakan Urutan Basa DNA Daerah Internal Transcribed Spacer (ITS), J Math Dan Sains, Maret. 13(1).

J. L. Collins. 1960. The Pineapple: Botany, Cultivation and Utilization,Interscience Publishers. New York. 294.

G. C. D’eeckenbrugge, G. Sanewski. 2011. Leaf Margin in Pineapple. Newsletter of the Pineapple Working Group, International Society for HortScience. 18.

Glenda, E. G. 2008. Chapter 4: Plant development and physiology. In: Neal, C.S. (Eds.), Plant Biotechnology and Genetics: Principles, Techniques, And Applications.

M. P. Virginia, L. P. Ronald. 1992. Genetic Implications of Somaclonal Variation in Plants. By John G. Scandalios, Theodore R. Wright. Advances in Genetics. 30.

M. K. Radzan. 2003. Introduction to Plant Tissue Culture. 2nd Edition. Science Publishers.

Bartholomew, D. P. 2009. MD2 Pineapple Transforms the World’s Pineapple Fresh Fruit Export Industry. Newsletter of the Pineapple Working Group, International Society for Horticultural Science. July 2009. 16: 2–5.

Williams, D. D. F., Fleisch, H. 1993. Historical Review of Pineapple Breeding in Hawaii. Acta Horticulturae. 334: 67–-76.

Aradhya, M. K., Zee, F. Manshardt, R. M. 1994. Isozyme Variation in Cultivated and Wild Pineapple. Euphytica. 79: 87–99.

Y. K. Chan, G. C. D’eeckenbrugge, G.M. Sanewski. 2003. Chapter 3: Breeding and Variety Improvement. In: Bartholomew DP, Paull RE, Rohrbach KG (Eds.), The Pineapple: Botany, Production and Uses. 33–51.

W. H. Li, D. Graur. 1991. Fundamentals of Molecular Biology. Sinauer Associates. Massachusetts.

W. D. Ronald, G. A. Lawrence. 1995. The Relationship Between Parsimony and Maximum Likelihood Analyses: Tree Scores and Confidence Estimates For Three Real Data Sets. Mol Bio Evo 12(2): 291–297.

Downloads

Published

2013-04-15

Issue

Section

Science and Engineering

How to Cite

Phylogenetic Abnalysis of Malaysian Pineapples Cultivars Based on the DNA Sequence of the Internal Transcribed Spacer Region. (2013). Jurnal Teknologi, 62(2). https://doi.org/10.11113/jt.v62.1878