Fuzzy Generalized Bi–Γ–Ideals of Type (λ, θ) In Ordered Γ–Semigroups

Authors

  • Faiz Muhammad Khan
  • Nor Haniza Sarmin Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Asghar Khan Department of Mathematics, Abdul Wali Khan University Mardan, KPK, Pakistan

DOI:

https://doi.org/10.11113/jt.v62.1881

Keywords:

Ordered Γ–semigroups, fuzzy generalized bi–Γ–ideals, (λ, θ)–fuzzy generalized bi–Γ–ideals, level set, characteristic function

Abstract

Subscribing to the Zadeh’s idea on fuzzy sets, many researchers strive to identify the key attributes of these sets for new finding in mathematics. In this perspective, we introduce a new concept of fuzzy generalized bi–Γ–ideal of an ordered Γ–semigroup G called a (λ, θ)–fuzzy generalized bi–Γ–ideal ofG. Fuzzy generalized bi–Γ–ideals of type (λ, θ) are the generalization of ordinary fuzzy generalized bi–Γ–ideals of an ordered Γ–semigroup G. A new classification of ordered Γ–semigroups in terms of a (λ, θ)–fuzzy generalized bi–Γ–ideal is given. Furthermore, we proved that U(μ, t) is a generalized bi–Γ–ideal if and only if the fuzzy subset μ is a (λ, θ)–fuzzy generalized bi–Γ–ideal of G for all t ∈(λ,θ]. Similarly, A is a generalized bi–Γ–ideal if and only if the characteristic function μA of A is a (λ, θ)–fuzzy generalized bi–Γ–ideal of G. Finally, the relationship between ordinary fuzzy generalized bi–Γ–ideal and (λ, θ)–fuzzy generalized bi–Γ–ideal is discussed.

References

Mordeson, J. N., Malik, D. S., Kuroki, N. 2003. Fuzzy Semigroups. Studies in Fuzziness and Soft Computing. Springer-Verlag, Berlin. 131.

Zadeh, L. A. 1965. Fuzzy Sets. Information and Control. 8: 338–353.

Rosenfeld, A. 1971. Fuzzy Groups. J. Math. Anal. Appl. 35: 512–517.

Kehayopulu, N., Tsingelis, M. 2005. Fuzzy Bi-ideals in Ordered Semigroups. Information Sciences. 171: 13–28.

Davvaz, B., Khan, A. 2011. Characterizations of Regular Ordered Semigroups in Terms of -fuzzy Generalized Bi-ideals. Information Sciences. 181: 1759–1770.

Khan, A., Jun, Y. B. Sarmin, N. H., Khan, F. M. 2012. Ordered Semigroups Characterized by -fuzzy Generalized Bi-ideals. Neural Comput & Applic. 21(1): S121–S132.

Sen, M. K., Saha, N. K. 1986. On Г-semigroups I. Bull. Cal. Math. Soc. 78: 180–186.

Sen, M. K. 1981. On Г-semigroups, Proceedings of the International Conference on Algebra and It's Applications. New York: Decker Publication, 301.

Kwon, Y. I., Lee, S. K. 1998. On Weakly Prime Ideals of Ordered Г-Semigroups. Comm. Korean Math. Soc. 13(2): 251–256.

Iampan, A. 2009. Characterizing Ordered Bi-Ideals in Ordered -Semigroups. Iranian Journal of Mathematical Sciences and Informatics. 4(1): 17–25.

Iampan, A. 2011. Characterizing Ordered Quasi-ideals of Ordered -Semigroups. Kragujevac Journal of Mathematics. 35(1): 13–23.

Chinram, R. 2009. Rough Prime Ideals and Rough Fuzzy Prime Ideals in Gamma-semigroups, Commun. Korean Math. Soc. 24(3): 341–351.

Chinram, R., Tinpun, K. 2009. A Note on Minimal Bi-ideals in Ordered -semigroups. International Mathematical Forum. 4(1): 1–5.

Mahmood, A., Naeem, M. N., Ahmad, Mand M. 2011. Fuzzy Г-ideals and Fuzzy Г-filters in Ordered Gamma Semigroups. European Journal of Scientific Research. 49(3): 311–321.

Davvaz, B., Zhan, J., Kim, K. H. 2010. Fuzzy Г-hypernear-rings, Comput. Math. Appl. 59: 2846–2853.

Khan, A., Mahmmod, T., Ali, I. 2010. Fuzzy Interior Г-ideals in Ordered Г-semigroups. J. Appl. Math. & Informatics. 28(5–6): 1217–1225.

Yuan, X., Zhang, C., Ren, Y. 2003. Generalized Fuzzy Groups and Many-valued Implications. Fuzzy Sets and Systems. 138: 205–211.

Yao, B. 2007. ( )--fuzzy subrings and ( )-fuzzy ideals, The Journal of Fuzzy Mathematics. 15(4): 981–987.

Yao, B. 2009. ( )-fuzzy Ideals in Semigroups. Fuzzy Systems and Mathematics. 23(1): 123–127.

Yao, B. 2005. ( )-fuzzy normal subfields and ( )-fuzzy Quotient Subfields. The Journal of Fuzzy Mathematics. 13(3): 695–705.

Coumaressane, S. 2010. Near-rings Characterized by Their (λ, θ)-fuzzy Quasi-ideals. International journal of Computational Cognition. 8: 5–1.

Downloads

Published

2013-05-15

Issue

Section

Science and Engineering

How to Cite

Fuzzy Generalized Bi–Γ–Ideals of Type (λ, θ) In Ordered Γ–Semigroups. (2013). Jurnal Teknologi (Sciences & Engineering), 62(3). https://doi.org/10.11113/jt.v62.1881