• Omed Mohammed Pirot ᵃCollege of Civil Engineering, University of Raparin, 46012 Ranya, Iraq ᵇFaculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sobri Harun Department of Hydraulics and Hydrology, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Open channel flow, Bedload transportation, rectangular configuration structure, weir structure, sediment motion


Sediment transport is the movement of organic and inorganic particles caused by gravity, a moving fluid’s force, the wind, and ice motion. Sediment deposition degrades dams’ safety, leading to environmental pollution and channel area reduction. This study describes the effect of the weir height and spacing of used and non-used rectangular configuration structures on sediment transport rates in an open channel. This project was created using a rectangular open channel (30 cm wide and 60 cm deep). A sharp-crested weir was installed in the channel, and the rectangular wooden configurations were fixed in specific locations on each weir to reduce the bedload transportation rate and sediment motion. The weir heights were different (0.25B, 0.35B, 0.45B, and 0.55B, where B is the channel width). Also, the spacing between the baffle blocks (S) was set to 4Y, 8Y, 12Y, and 16Y, where Y was the maximum water depth without installing blocks and weirs. The results showed that the maximum transported bedload for the lowest weir was 1.4 kg/min, but only 4.4 × 10-3 kg/min was transported for the weir 16.5-cm high with baffle blocks. Using long baffle blocks yielded a worse result than using no blocks. The sediment-transport rate increased to 1.66 kg/min for the 7.5-cm weir due to block configurations. In conclusion, the obtained result contradicts the predicted result, as using baffle blocks increased the sediment transportation rate.


M. Abubakar Tadda, A. Ahsan, M. Imteaz, A. Shitu, U. Abdulbaki Danhassan, and A. Idris Muhammad. 2020. Operation and Maintenance of Hydraulic Structures. Hydraulic Structures-Theory and Applications. IntechOpen. 1–13. DOI: 10.5772/intechopen.91949

A. O. Hassan, Y. F. Mohammed, and Q. S. Sadiq. 2014. A Model for Removing Sediments from Open Channels. Int. J. Phys. Sci. 9(4): 61-70. DOI: 10.5897/ijps2013.4074.

Rowinski, E. 2011. Geoplanet: Earth and Planetary Sciences. Springer.

B. J. Fan and G. L. Morris. 1992. Reservoir Sedimentation. I: Delta and Density Current Deposits. J. Hydraul. Eng. 118(3): 354-369. DOI: 10.1061/(ASCE)0733-9429

S. Ren, B. Zhang, W. J. Wang, Y. Yuan, and C. Guo. 2021. Sedimentation and Its Response to Management Strategies of the Three Gorges Reservoir, Yangtze River, China. Catena. 199: 105096. DOI: 10.1016 /j.catena. 2020. 105096.

Z. Yin Wang and C. Hu. 2009. Strategies for Managing Reservoir Sedimentation. Int. J. Sediment Res. 24(4): 369-384. DOI: 10.1016/S1001-6279(10)60011-X.

B. Gomez. 1991. Bedload Transport. Earth-Science Rev. 31: 89-132. DOI: 10.1016/0012-8252(91)90017-A.

A. Abbas, H. Alwash, and A. Mahmood. 2018. Effect of Baffle Block Configurations on Characteristics of Hydraulic Jump in Adverse Stilling Basins. MATEC Web Conf. 162: 26-32. DOI: 10.1051 /matecconf / 201816203005.

J. L. Alexander, L. Mohd Sidek, M. N. Mohamed Desa, and P. Y. Julien. 2012. Challenge in Running Hydropower as Source of Clean Energy: Ringlet Reservoir, Cameron Highlands Case Study. Proc. Natl. Grad. Conf. 2012. 2012: 8-10.

M. Zubair, T. Anuar, and S. Harun. 2016. Flood Flow Characteristics and Bed Load Transport In Non-vegetated Compound Straight Channels. Jurnal Teknologi. 4: 1-8. DOI:

J. I. Theule, F. Liébault, D. Laigle, A. Loye, and M. Jaboyedoff. 2015. Channel Scour and Fill by Debris Flows and Bedload Transport. Geomorphology. 243: 92-105. DOI: 10.1016/j.geomorph.2015.05.003.

P. E. Carbonneau and N. E. Bergeron. 2000. The Effect of Bedload Transport on Mean and Turbulent Flow Properties. Geomorphology. 35(3-4): 267-278. DOI: 10.1016/S0169-555X(00)00046-5.

C. Chiu and N. Tung. 2002. Maximum Velocity and Regularities in Open-channel Flow. J. Hydraul. Eng. 128(4): 390-398. DOI: 10.1061/(ASCE)0733- 9429.

F. Engelund and J. Fredsoe. 1976. A Sediment Transport Model for Straight Alluvial Channels. 293-306. DOI: 10.2166/nh.1976.0019.

P. Gao and A. D. Abrahams. 2004. Bedload Transport Resistance in Rough Open-channel Flows. Earth Surf. Process. Landforms. 29(4): 423-435. DOI: 10.1002/esp.1038.

E. M. Yager, J. W. Kirchner, and W. E. Dietrich. 2007. Calculating Bed Load Transport in Steep Boulder Bed Channels. Water Resour. Res. 43(7):. 1-24. DOI: 10.1029/2006WR005432.

A. B. Shvidchenko and G. Pender. 2001. Large flow Structures in a Turbulent Open Channel Flow. J. Hydraul. Res. Rech. Hydraul. 39(1): 109-111. DOI: 10.1080/00221680109499810.

S. Nomura, G. De Cesare, M. Furuichi, Y. Takeda, and H. Sakaguchi. 2020. Quasi-stationary Flow Structure in Turbidity Currents. Int. J. Sediment Res. 35(6): 659-665. DOI: 10.1016/j.ijsrc.2020.04.003.

M. Agelinchaab and M. F. Tachie. 2008. PIV Study of Separated and Reattached Open Channel Flow over Surface Mounted Blocks. J. Fluids Eng. Trans. ASME. 130(6): 1-9. DOI: 10.1115/1.2911677.

S. T. Gajusingh, N. Shaikh, and K. Siddiqui. 2010. Influence of a Rectangular Baffle on the Downstream Flow Structure. Exp. Therm. Fluid Sci. 34(5): 590-602. DOI: 10.1016/j.expthermflusci.2009.11.011.

J. Groom and H. Friedrich. 2019. Spatial Structure of Near-Bed Flow Properties at the Grain Scale. Geomorphology. 327: 14-27. DOI: 10.1016/j.geomorph.2018.10.013.

L. J. Hunter, I. D. Watson, and G. T. Johnson. 1990. Modelling Air Flow Regimes in Urban Canyons. Energy Build. 15(3-4): 315-324. DOI: 10.1016/0378-7788(90)90004-3.

Y.Yang and Y. Shao. 2006. A Scheme for Scalar Exchange in the Urban Boundary Layer. Boundary-Layer Meteorol. 120(1): 111-132. DOI: 10.1007/s10546-005-9033-5.

G. C. Christodoulou. 2014. Equivalent Roughness of Submerged Obstacles in Open-Channel Flows. J. Hydraul. Eng. 140(2): 226-230. DOI: 10.1061/(asce)hy.1943-7900.0000801.

A. G. Roy, T. Buffin-Bélanger, H. Lamarre, and A. D. Kirkbride. 2004. Size, Shape and Dynamics of Large-scale Turbulent Flow Structures in a Gravel-bed River. J. Fluid Mech. 500: 1-27. DOI: 10.1017/S0022112003006396.




How to Cite




Science and Engineering