The Exterior Squares of Some Crystallographic Groups

Authors

  • Hazzirah Izzati Mat Hassim Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Nor Haniza Sarmin Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Nor Muhainiah Mohd Ali Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor
  • Rohaidah Masri Masri Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tg. Malim, Perak
  • Nor’ashiqin Mohd Idrus Mohd Idrus Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tg. Malim, Perak

DOI:

https://doi.org/10.11113/jt.v62.1882

Keywords:

Crystallographic groups, Bieberbach groups, exterior squares

Abstract

A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space En, where the quotient space En/G is compact. A specific type of crystallographic groups is called Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of the group.

References

D. R. Farkas. 1981. Rocky Mountain Journal of Mathematics. 11(4): 511.

H. Hiller. 1986. The American Mathematical Monthly. 93(10): 765.

W. Plesken, T. Schulz. 2000. Experimental Mathematics. 9 (3): 407.

C. Cid, T. Schulz. 2001. Experimental Mathematics. 10(1): 109.

Rohaidah Masri. 2009. Ph.D. Thesis, Universiti Teknologi Malaysia.

R. Brown, J. L. Loday. 1987. Topology. 26(3): 311.

L. C. Kappe, M. P. Visscher, N. H. Sarmin. 1999. Glasgow Mathematical Journal. 41(3): 417.

J. R. Beuerle, L. C. Kappe. 2000. Proc. Edinburgh Math. Soc. (2). 43(3): 651.

R. D. Blyth, P. Moravec, R. F. Morse. 2008. Contemporary Mathematics. 470: 27.

M. R. Bacon, L. C. Kappe. 2003. Illinois Journal of Math. 47: 49.

N. M. Mohd Ali, N. H. Sarmin, L. C. Kappe. 2007. Proceeding of 15th Mathematical Sciences National Conference (SKSM 15). 71–76.

V. A. R. Ramachandran, N. H. Sarmin, N. M. Mohd Ali. 2008. Proceeding of Regional Annual Fundamental Science Seminar. 350–354.

B. Eick, W. Nickel. 2008. Journal of Algebra. 320: 927.

N. R. Rocco. 1991. Soc. Brasil. Mat. (N. S.). 22(1): 63.

G. Ellis, F. Leonard. 1995. Proc. Roy. Irish Acad Sect. A. 95(2): 137.

R. D. Blyth, R. F. Morse. 2009. Journal of Algebra. 321: 2139.

R. D. Blyth, F. Fumagalli, M. Morigi. 2010. J. Group Theory. 13: 83.

R. Brown, D. L. Johnson, E. F. Robertson. 1987. Journal of Algebra. 111: 177.

A. J. Zomorodian. 2005. Topology for Computing. New York: Cambridge University Press.

Downloads

Published

2013-05-15

Issue

Section

Science and Engineering

How to Cite

The Exterior Squares of Some Crystallographic Groups. (2013). Jurnal Teknologi (Sciences & Engineering), 62(3). https://doi.org/10.11113/jt.v62.1882