Evaluation of Different EEG Source Localization Methods Using Testing Localization Errors
DOI:
https://doi.org/10.11113/jt.v62.1883Keywords:
Inverse /forward problem, comparative test of tomographic techniques, LORETA, WMN and MNAbstract
The ideas underlying the quantitative localization of the sources of the EEG review within the brain along with the current and emerging approaches to the problem. The ideas mentioned consist of distributed and dipolar source models and head models ranging from the spherical to the more realistic based on the boundary and finite elements. The forward and inverse problems in electroencephalography will debate. The inverse problem has non-uniqueness property in nature. More precisely, different combinations of sources can produce similar potential fields occur on the head. In contrast, the forward problem does have a unique solution. The forward problem calculates the potential field at the scalp from known source locations, source strengths and conductivity in the head, and it can be used to solve the inverse problem. In the final part of this paper, we compare the performance of three well–known EEG source localization techniques which applied to the underdetermined (distributed) source localization of the inverse problem. These techniques consist of LORETA, WMN and MN, which comparing by testing localization error.References
Baratchart, L.,Ben Abda, A, Ben Hassen, F. and Leblond, J. 2005. Recovery of Pointwise Sources rr Small Inclusions in 2D Domains and Rational Approximation. Inverse Problems. 21: 51–74.
Hämäläinen, M. S., R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. 1993. Magnetoencephalography. Theory, Instrumentation and Applications to the Noninvasive Study of Human Brain Function. Rev. Mod. Phys. 65: 413–497.
Malmivuo. J. and R. Plonsey. 1995. Bioelectromagnetism. Oxford Univ. Press.
Wendel, K., Väisänen, O., Malmivuo, J., Gencer, N. G, Vanrumste, B., Durka, P. J., Magjarevic, R., Selma Supek, S., Pascu, M. P., Fontenelle, H., Menendez, R. G. D. P. 2009. EEG/MEG Source Imaging: Methods, Challenges, and Open Issues. Computational Intelligence and Neuroscience. Article ID 656092, 12.
Baillet, S ., Mosher, J. C., and Leahy. 2001. R. M. Electromagnetic Brain Mapping. IEEE Signal Process. Mag. Nov, 14–30.
Fuchs. M., Wagner, M., Kohler, T. and Wischmann, H-A. 1999. Linear and Nonlinear Current Density Reconstructions. J. Clin. Neurophysiol. 16: 267–95.
George, J. S., Aine, C. J., Mosher, .J. C., Schmidt, D. M., Ranken, D. M., Schlitt, H. A., Wood, C. C., Lewine, .J. D., Sanders, .J. A., Belliveau. J. W. 1995. Mapping Function in the Human Brain with Magnetoencephalography, Anatomical Magnetic Resonance Imaging, And Functional Magnetic Resonance Imaging (Review). J Clin Neurophysiol. 12: 406–31.
Gonzalez Andino, S., van Dijk, B. W., De Munck, J. C., Grave de Peralta, R., Kno¨sche, T. 1999. Source Modeling. In: Uhl C, editor. Analysis of Neurophysiological Brain Functioning. Berlin: Springer. 148–228.
Grave de Peralta Menendez, R., Gonzalez Andino, S. L. 1998. A Critical Analysis of Linear Inverse Solutions. IEEE Trans Biomed Eng. 45: 440–8.
He. B., Lian, J. 2002. High-resolution Spatio-temporal Functional Neuroimaging of Brain Activity (Review). Crit Rev Biomed Eng. 30: 283–306.
Pascual-Marqui, R. D. 1999.Review of Methods for Solving the EEG Inverse problem. IJBEM. 1(1): 75–86 .
Ebersole, J. S. 1994. Noninvasive Localization of the Epileptogenic Focus by EEG Dipole Modelling. Acta Neurol. Scand. 152(l): 20–28.
Ebersole, J. S. Functional Neuroimaging with Eeg Source Models to Localize Epilep-togenic Foci Noninvasively. University of Chicago Hospitals' Clinical Comment.
Ebersole, J. S., Hawes, S. M. 1997. Spike/seizure Dipoles Derived from Realistic Head Models Accurately Portray Temporal Lobe Foci. Epilepsia. 38(8): 66.
Baillet, S., Riera, J. J., Marin, G., Mangin, J. F., Aubert, J. and Garnero, L. 2001b. Evaluation of Inverse Methods and Head Models for EEG Source Localization Using a Human Skull Phantom. Phys. Med. Biol. 46: 77–96.
Jackson, J. 1984. Classical Electrodynamics. Academic Press Inc. Third ed.
Hallez, H, Vanrumste, B., Grech, R., Muscat, J., Clercq, W. D., Vergult, A., D'Asseler, Y., Camilleri, K. P., abri, S. G., Huffel, S. V. and Lemahieu, I. 2007. Review on Solving the Forward Problem In EEG Source Analysis. Journal of NeuroEngineering and Rehabilitation. 4: 46.
Darvas, F., D. Pantazis, E. Kucukaltun-Yildirim, and R. M. Leahy. 2004.Mapping Human Brain Function with MEG and EEG: Methods and Validation. NeuroImage. 23: S289–S299.
Geddes, L. A. and Baker, L. E. 1967. The Specific Resistance of Biological Material–A Compendium of Data for the Biomedical Engineer and Physiologist. Med. Biol. Eng. 5: 271.
Vatta. F., P. Bruno, and P. Inchingolo. 2005. Multiregion bicentric-Spheres Models of the Head for the Simulation of Bioelectric Phenomena. IEEE Transactions on Biomedical Engineering. 52(3):384–389.
Fuchs, .M., M. Wagner, and J. Kastner. 2001. Boundary Element Method Volume Conductor Models for EEG Source Reconstruction. Clinical Neurophysiology. 112(8): 1400–1407.
Fuchs, M., M. Wagner, and J. Kastner. 2007. Development of Volume Conductor and Source Models to Localize Epileptic Foci. Journal of Clinical Neurophysiology. 24(2): 101–119
Ramon, C., J. Haueisen, and P. H. Schimpf. 2006.Influence of head models on neuromagnetic fields and inverse source localizations. BioMedical Engineering Online. 5: 55.
Barnard, A. C. L., Duck, I. M., and M. S. Lynn. 1967. The Application of Electromagnetic Theory to Electrocardiography—I: Derivation Of the Integral Equations. Biophysics Journal. 7: 443–462.
De Munck, J. C., van Dijk, B. W., and Spekreijse, H. 1988. Mathematical Dipoles are Adequate to Describe Realistic Generators of Human Brain Activity. IEEE Trans. Biomed. Eng. 35: 960–966.
Uutela, K., H¨am¨al¨ainen. M and Salmelin, R. 1998. Global Optimization in the Localization of Neuromagnetic Sources. IEEE Trans. Biomed. Eng. 45: 716–23.
Dale, A. M. and Sereno, .M. I.1993. Improved Localization of Cortical Activity by Combining EEG and MEG with MRI Surface Reconstruction. A Linear Approach J. Cognit. Neurosci. 5: 162–76.
Im, C-H., An, K-O., Jung, H-K., Kwon, H. and Lee, Y-H. 2003. Assessment Criteria forMEG/EEG Cortical Patch. Tests Phys. Med. Biol. 48: 2561–73.
Bonmassar, G., Schwartz, D. P., Liu, A. K., Kwong, K. K., Dale, A., Mand Belliveau, J. W. 2001. Spatiotemporal Brain Imaging of Visual-Evoked Activity Using Interleaved EEG and fMRI Recordings. Neuroimage. 13(10): 35–43.
Jerbi. K., Mosher, .J .C., Nolte, G., Baillet, S., Garnero, L. and Leahy, R. M. 2002. From Dipoles to Multipoles: Parametric Solutions to the Inverse Problem in MEG Proc. Conf. on Biomagnetism—BIOMAG.
Pascual-Marqui, R. D., Lehmann, D., Koenig, T., Kochi, K., Merlo M. C. G., Hell, D., Koukkou, M. 1999. Low Resolution Brain Electromagnetic Tomography (LORETA) Functional Imaging in Acute, Neurolepticnaive, First-Episode, Productive Schizophrenics. Psychiatry Research: Neuroimaging.
Backus, G., and Gilbert, F.1968. The Resolving Power of Gross Earth Data. Geophys. J. R. Astr. Soc.16: 169–205.
Golub, G. H. and Van Loan, C. F. 1983. Matrix Computation. Baltimore, MD: The John Hopkins University. Press.
Hämäläinen, M. S. and Ilmoniemi, R. J. 1984. Interpreting Measured Magnetic Fields of the Brain: Estimates of Current Distributions. Technical Report TKK-F-A559, Helsinki University of Technology.
Koles, Z. J. 1998.Trends in EEG source localization. Electroenceph. clin. Neurophysiol. 106: 127–137.
Ary, J. P., Klevin, S. A., and Fender, D. H. 1981. Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thickness. IEEE Trans. Biomed. Eng. 28: 447–452.
Lutkenhoner, B. and Mosher, J. (private communication).
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.