• Nurul Nabila Huda Baharudin Department of Chemical and Process Engineering Technology, College of Engineering, UMP, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia https://orcid.org/0000-0001-9533-3454
  • Rohaida Che Man Department of Chemical and Process Engineering Technology, College of Engineering, UMP, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia https://orcid.org/0000-0001-5654-534X
  • Nor Hasmaliana Abdul Manas ᵇSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᶜInstitute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0001-6758-9057
  • Rabi'atul Adawiyah Ahmad Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Nur Nadia Mohd Zakaria Department of Chemical and Process Engineering Technology, College of Engineering, UMP, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia https://orcid.org/0000-0002-3704-1442




Cell immobilization, cyclodextrin, cyclodextrin glucanotransferase, immobilization supports, immobilization techniques


Cell immobilization has been applied in various industries, including chemical manufacturing, food, pharmaceutical, and textile. Recently, innovations in cell immobilization techniques and support materials have been put forward for application in high value-added chemical biosynthesis, such as cyclodextrin (CD). The techniques, support materials, and process parameters of cell immobilization play important roles in achieving high CD yield. This review should help one choose the correct cell immobilization technique and support for a CD biosynthesis setup. Previously, CD biosynthesis utilized free cells, even though they present difficulties such as the low product yield, cell lysis, unstable plasmid, and non-reusable cells. This review highlights how the problems that arise from free-cell bioreactors could be mitigated by cell immobilization. The process conditions of cell immobilization for CD production are also presented.


R. Willaert, V. U. Brussel. 2016. Trends and Future Prospects. https://doi.org/10.1201/b11490-13.

J. Zur, D. Wojcieszyńska, U. Guzik. 2016. Metabolic Responses of Bacterial Cells to Immobilization. Molecules. 21(2016). https://doi.org/10.3390/molecules21070958.

L. Wang, F. Jia, D. Wu, Q. Wei, Y. Liang, Y. Hu, R. Li, G. Yu, Q. Yuan, J. Wang. 2020. In-situ Growth of Graphene on Carbon Fibers for Enhanced Cell Immobilization and Xylitol Fermentation. Appl. Surf. Sci. 527: 146793. https://doi.org/10.1016/j.apsusc.2020.146793.

J. Żur, A. Piński, J. Michalska, K. Hupert-Kocurek, A. Nowak, D. Wojcieszyńska, U. Guzik. 2020. A Whole-cell Immobilization System on Bacterial Cellulose for the Paracetamol-degrading Pseudomonas Moorei KB4 Strain. Int. Biodeterior. Biodegrad. 149: 104919. https://doi.org/10.1016/j.ibiod.2020.104919.

A. Fareed, S. Riaz, I. Nawaz, M. Iqbal, R. Ahmed, J. Hussain, A. Hussain, A. Rashid, T. A. Naqvi. 2019. Immobilized Cells of a Novel Bacterium Increased the Degradation of N-methylated Carbamates under Low Temperature Conditions. Heliyon. 5: e02740. https://doi.org/10.1016/j.heliyon.2019.e02740.

C. T. H. Tran, N. Nosworthy, M. M. M. Bilek, D. R. McKenzie. 2015. Covalent Immobilization of Enzymes and Yeast: Towards a Continuous Simultaneous Saccharification and Fermentation Process for Cellulosic Ethanol. Biomass and Bioenergy. 81: 234-241. https://doi.org/10.1016/j.biombioe.2015.07.009.

S. Behera, R. C. Ray. 2015. Batch Ethanol Production from Cassava (Manihot esculenta Crantz.) Flour using Saccharomyces Cerevisiae Cells Immobilized in Calcium Alginate. Ann. Microbiol. 65: 779-783. https://doi.org/10.1007/s13213-014-0918-8.

T. L. Pham, T. R. Usacheva, I. A. Kuz’mina, T. N. Nguyen, H. Thai, M. A. Volkova, H. K. Le, T. D. Nguyen, V. A. Volynkin, D. L. Tran. 2020. Effect of Cyclodextrin Types and Reagents Solvation on the Stability of Complexes between B-cyclodextrins and Rutin in Water-ethanol Solvents. J. Mol. Liq. 318: 114308. https://doi.org/10.1016/j.molliq.2020.114308.

C. Moriwaki, C. S. Mangolim, G. B. Ruiz, G. R. de Morais, M. L. Baesso, G. Matioli. 2014. Biosynthesis of CGTase by Immobilized Alkalophilic Bacilli and Crystallization of Beta-cyclodextrin: Effective Techniques to Investigate Cell Immobilization and the Production of Cyclodextrins. Biochem. Eng. J. 83: 22-32. https://doi.org/10.1016/j.bej.2013.12.004.

G. Crini, L. Aleya. 2022. Cyclodextrin Applications in Pharmacy, Biology, Medicine, and Environment. Environ. Sci. Pollut. Res. 167-170. https://doi.org/10.1007/s11356-021-16871-2.

S. Huleani, M. R. Roberts, L. Beales, H. Emmanouil. 2021. Critical Reviews in Biotechnology Escherichia coli as an Antibody Expression Host for the Production of Diagnostic Proteins : Significance and Expression. Crit. Rev. Biotechnol. 1–18. https://doi.org/10.1080/07388551.2021.1967871.

R. Pazzetto, T. C. De Oliveira Delani, V. C. Fenelon, G. Matioli. 2011. Cyclodextrin Production by Bacillus firmus Strain 37 Cells Immobilized on Loofa Sponge. Process Biochem. 46: 46-51. https://doi.org/10.1016/j.procbio.2010.07.008.

C. Mazzer, L. R. Ferreira, J. R. T. Rodella, C. Moriwaki, G. Matioli, Cyclodextrin Production by Bacillus Firmus Strain 37 Immobilized on Inorganic Matrices and Alginate Gel. Biochem. Eng. J. 41: 79-86. https://doi.org/10.1016/j.bej.2008.03.010.

S. Pachelles, S. Fatimah, Z. Mohamad, R. Che, A. Azamimi, R. Illias. 2021. Combine Strategy of Treated Activated Charcoal and Cell Surface Protein Curli Induction for Enhanced Performance in Escherichia coli Immobilization. Process Biochem. 110: 26-36. https://doi.org/10.1016/j.procbio.2021.06.012.

T. C. de O. Delani, R. Pazzetto, C. S. Mangolim, V. C. Fenelon, C. Moriwaki, G. Matioli. 2012. Improved Production of Cyclodextrins by Alkalophilic Bacilli Immobilized on Synthetic or Loofa Sponges. Int. J. Mol. Sci. 13:13294-13307. https://doi.org/10.3390/ijms131013294.

R. F. Martins, F. M. Plieva, A. Santos, R. Hatti-Kaul. 2003. Integrated Immobilized Cell Reactor-adsorption System for β-cyclodextrin Production: A Model Study using PVA-cryogel Entrapped Bacillus Agaradhaerens Cells. Biotechnol. Lett. 25: 1537-1543. https://doi.org/10.1023/A:1025408727114.

Z. Li, Y. Feng, Z. Li, Z. Gu, S. Chen, Y. Hong, L. Cheng, C. Li, 2020. Inclusion of Tributyrin during Enzymatic Synthesis of Cyclodextrins by β-cyclodextrin Glycosyltransferase from Bacillus Circulans. Food Hydrocoll. 99: 105336. https://doi.org/10.1016/j.foodhyd.2019.105336.

R. C. Man, R. M. Illias, A. N. M. Ramli, S. K. A. Mudalip. 2022. Optimization of Culture Conditions of Immobilized Cells for Enzyme Excretion and Cell Lysisx. Chem. Eng. Technol. 45: 1461-1466. https://doi.org/10.1002/ceat.202100425.

N. Atanasova, T. Kitayska, D. Yankov, M. Safarikova, A. Tonkova. 2009. Cyclodextrin Glucanotransferase Production by Cell Biocatalysts of Alkaliphilic Bacilli. Biochem. Eng. J. 46: 278-285. https://doi.org/10.1016/j.bej.2009.05.020.

L. A. Silva, G. Matioli, G. M. Zanin, F. F. Moraes. 2021. Batch CGTase Production with Free and Immobilized Bacillus firmus Strain 37 in Bovine Bone Charcoal. 91-104. https://doi.org/10.4236/aces.2021.111007.

A. Ahmed, U. Ejaz, M. Sohail. 2020. Pectinase Production from Immobilized and Free Cells of Geotrichum Candidum AA15 in Galacturonic Acid and Sugars Containing Medium. J. King Saud Univ. - Sci. 32. 952-954. https://doi.org/10.1016/j.jksus.2019.07.003.

E. Of, R. Conditions, O. N. 2018. Effect of Reaction Conditions on the Synthesis of Cyclodextrin (CD) by Using. Jurnal Teknologi. 3: 165-171.

R. Ganesh Saratale, S. K. Cho, G. Dattatraya Saratale, A. A. Kadam, G. S. Ghodake, M. Kumar, R. Naresh Bharagava, G. Kumar, D. Su Kim, S. I. Mulla, H. Seung Shin. 2021. A Comprehensive Overview and Recent Advances on Polyhydroxyalkanoates (PHA) Production using Various Organic Waste Streams. Bioresour. Technol. 325: 124685. https://doi.org/10.1016/j.biortech.2021.124685.

I. Horiguchi, F. Gandhi, T. Hotaka, N. Haruka, K. Inamura, O. Hirata, H. Hayashi, M. Horikawa, Y. Sakai. 2021. Protection of Human Induced Pluripotent Stem Cells against Shear Stress in Suspension Culture by Bingham Plastic Fluid. 1-8. https://doi.org/10.1002/btpr.3100.

P. Kilonzo. 2012. Surface Modifications for Controlled and Optimized Cell Immobilization by Adsorption: Applications in Fibrous Bed Bioreactors Containing Recombinant Cells, J. Microb. Biochem. Technol. 01. https://doi.org/10.4172/1948-5948.s8-001.

J. Moreno-García, T. García-Martínez, J. C. Mauricio, J. Moreno. 2018. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.00241.

S. Aruni, A. Manaf, M. Fuzi, N. Hasmaliana, A. Manas, K. O. Low, G. Hegde, R. C. Man, N. Izyan, W. Azelee, H. M. Matias-peralta. 2020. Emergence of Nanomaterials as Potential Immobilization Supports for Whole Cell Biocatalysts and Cell Toxicity Effects. 1128-1138. https://doi.org/10.1002/bab.2034.

Suzana Cláudia Silveira Martins, Claudia Miranda Martins, Larissa Maria Cidrão Guedes Fiúza and Sandra Tédde Santaella. 2013. Immobilization of Microbial Cells: A Promising Tool for Treatment of Toxic Pollutants in Industrial Wastewater. African J. Biotechnol. 12: 4412-4418. https://doi.org/10.5897/ajb12.2677.

P. Kilonzo, A. Margaritis, M. Bergougnou. 2009. Airlift-driven Fibrous-bed Bioreactor for Continuous Production of Glucoamylase using Immobilized Recombinant Yeast Cells. J. Biotechnol. 143: 60-68. https://doi.org/10.1016/j.jbiotec.2009.06.007.

Y. Ojima, M. H. Nguyen, R. Yajima, M. Taya. 2015. Flocculation of Escherichia Coli Cells in Association with Enhanced Production of outer Membrane Vesicles. Appl. Environ. Microbiol. 81: 5900-5906. https://doi.org/10.1128/AEM.01011-15.

G. Rehn, C. Grey, C. Branneby, P. Adlercreutz. 2013. Chitosan Flocculation: An Effective Method for Immobilization of E. coli for Biocatalytic Processes. J. Biotechnol. 165: 138-144. https://doi.org/10.1016/j.jbiotec.2013.03.014.

Y. Jin, R. A. Speers, cerevisiae. 2016. Effect of Environmental Conditions on the Flocculation of Saccharomyces cerevisiae. Journal of the American Society of Brewing Chemists. 58(3): 108-116.

G. Elżbieta, J. Magdalena. 2011. Review Article: Immobilization Techniques and Biopolymer Carriers. Biotechnol. Food Sci. 75: 65-86.

S. Gao, Y. Wang, X. Diao, G. Luo, Y. Dai. 2010. Effect of Pore Diameter and Cross-linking Method on the Immobilization Efficiency of Candida Rugosa Lipase in SBA-15. Bioresour. Technol. 101: 3830-3837. https://doi.org/10.1016/j.biortech.2010.01.023.

I. Stolarzewicz, E. Białecka-Florjańczyk, E. Majewska, J. Krzyczkowska. 2011. Immobilization of Yeast on Polymeric Supports. Chem. Biochem. Eng. Q. 25: 135-144.

D. Van Pham, L. Tho Bach. 2014. Immobilized Bacteria by using PVA (Polyvinyl alcohol) Crosslinked with Sodium Sulfate. Int. J. Sci. Eng. 7. https://doi.org/10.12777/ijse.7.1.41-47.

Y. Dong, Y. Zhang, B. Tu. 2017. Immobilization of Ammonia-oxidizing Bacteria by Polyvinyl Alcohol and Sodium Alginate. Brazilian J. Microbiol. 48: 515-521. https://doi.org/10.1016/j.bjm.2017.02.001.

D. Orrego, A. D. Zapata-Zapata, D. Kim. 2018. Ethanol Production from Coffee Mucilage Fermentation by S. cerevisiae Immobilized in Calcium-alginate Beads, Bioresour. Technol. Reports. 3: 200-204. https://doi.org/10.1016/j.biteb.2018.08.006.

R. Aragão Börner, O. Zaushitsyna, D. Berillo, N. Scaccia, B. Mattiasson, H. Kirsebom. 2014. Immobilization of Clostridium acetobutylicum DSM 792 as Macroporous Aggregates through Cryogelation for Butanol Production. Process Biochem. 49: 10-18. https://doi.org/10.1016/j.procbio.2013.09.027.

L. Ouyang, D. M. Dotzauer, S. R. Hogg, J. MacAnás, J. F. Lahitte, M. L. Bruening. 2010. Catalytic Hollow Fiber Membranes Prepared using Layer-by-layer Adsorption of Polyelectrolytes and Metal Nanoparticles. Catal. Today. 156: 100-106. https://doi.org/10.1016/j.cattod.2010.02.040.

R. C. Man, A. F. Ismail, N. F. Ghazali, S. F. Z. M. Fuzi, R. M. Illias. 2015. Effects of the Immobilization of Recombinant Escherichia Coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Viability. Biochem. Eng. J. 98: 91-98. https://doi.org/10.1016/j.bej.2015.02.013.

Y. Huang, C. Xiao, Q. Huang, H. Liu, J. Zhao. 2020. Progress on Polymeric Hollow Fiber Membrane Preparation Technique from the Perspective of Green and Sustainable. Chem. Eng. J. 126295. https://doi.org/10.1016/j.cej.2020.126295.

N. Jamil, R. Che Man, S. Suhaimi, S. Md Shaarani, Z. Iffah Mohd Arshad, S. Kholijah Abdul Mudalip, S. Zubaidah Sulaiman. 2018. Effect of Enzyme Concentration and Temperature on the Immobilization of Cyclodextrin Glucanotransferase (CGTase) on Hollow Fiber Membrane. Mater. Today Proc. 5: 22036-22042. https://doi.org/10.1016/j.matpr.2018.07.065.

L. Liu, S. Liu, X. Tan. 2010. Zirconia Microbial Hollow Fibre Bioreactor for Escherichia Coli Culture. Ceram. Int. 36: 2087-2093. https://doi.org/10.1016/j.ceramint.2010.04.002.

S. A. Markov, E. S. Protasov, V. A. Bybin, E. R. Eivazova, D. I. Stom. 2015. Using Immobilized Cyanobacteria and Culture Medium Contaminated with Ammonium for H2 Production in a Hollow-fiber Photobioreactor. Int. J. Hydrogen Energy. 40: 4752-4757. https://doi.org/10.1016/j.ijhydene.2015.02.053.

S. Mohapatra, S. Maity, H. R. Dash, S. Das, S. Pattnaik, C. C. Rath, D. Samantaray. 2017. Bacillus and Biopolymer: Prospects and Challenges. Biochem. Biophys. Reports. 12: 206-213. https://doi.org/10.1016/j.bbrep.2017.10.001.

L. A. Silva, B. C. Bieli, O. V. Junior, G. Matioli, G. M. Zanin, F. F. Moraes. 2018. Bovine Bone Charcoal as Support Material for Immobilization of Bacillus firmus Strain 37 and Production of Cyclomaltodextrin Glucanotransferase by Batch Fermentation in a Fluidized Bed. 11-25. https://doi.org/10.4236/aces.2018.81002.

T.S. Gucdes, M. B. Mansur, S. D. F. Rocha. 2007. A Perspective of Bone Char Use in the Treatment of Industrial Liquid Effluents Contalning Heavy Metals. 427-434.

R. Che Man, A. Fauzi Ismail, S. Fatimah Zaharah Mohd Fuzi, N. Faisal Ghazali, R. Md Illias. 2016. Effects of Culture Conditions of Immobilized Recombinant Escherichia coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Stability. Process Biochem. 51: 474-483. https://doi.org/10.1016/j.procbio.2016.01.002.

R. C. Man, S. S. Nawi, Z. Iffah, M. Arshad, S. Kholijah, A. Mudalip, S. Zubaidah. 2020. Effect of Reaction Parameters on the Production of Cyclodextrin using Cyclodextrin Glucanotransferase from Bacillus licheniformis. 06: 39-45.

J. da N. Schöffer, C. R. Matte, D. S. Charqueiro, E. W. de Menezes, T. M. H. Costa, E. V. Benvenutti, R. C. Rodrigues, P. F. Hertz. 2017. Directed Immobilization of CGTase: The Effect of the Enzyme Orientation on the Enzyme Activity and its Use in Packed-bed Reactor for Continuous Production of Cyclodextrins. Process Biochem. 58: 120-127. https://doi.org/10.1016/j.procbio.2017.04.041.

R. Pazzetto, S. B. De Souza Ferreira, E. J. S. Santos, C. Moriwaki, T. A. Guedes, G. Matioli. 2012. Preservation of Bacillus Firmus Strain 37 and Optimization of Cyclodextrin Biosynthesis by Cells Immobilized on Loofa Sponge. Molecules. 17: 9476-9488. https://doi.org/10.3390/molecules17089476.

J. Y. Wang, Y. P. Chao. 2006. Immobilization of Cells with Surface-displayed Chitin-binding Domain. Appl. Environ. Microbiol. 72: 927-931. https://doi.org/10.1128/AEM.72.1.927-931.2006.

S. R. Muria, B. Cheirsilp, S. Kitcha. 2011. Effect of Substrate Concentration and Temperature on the Kinetics and Thermal Stability of Cyclodextrin Glycosyltransferase for the Production of β-cyclodextrin: Experimental Results vs. Mathematical Model. Process Biochem. 46: 1399-1404. https://doi.org/10.1016/j.procbio.2011.03.007.

A. M. Mimi Sakinah, A. F. Ismail, R. M. Illias, A. W. Zularisam, O. Hassan, T. Matsuura. 2014. Effect of Substrate and Enzyme Concentration on Cyclodextrin Production in a Hollow Fibre Membrane Reactor System. Sep. Purif. Technol. 124: 61-67. https://doi.org/10.1016/j.seppur.2014.01.005.

J. D. N. Schöffer, M. P. Klein, R. C. Rodrigues, P. F. Hertz. 2013. Continuous Production of β-cyclodextrin from Starch by Highly Stable Cyclodextrin Glycosyltransferase Immobilized on Chitosan. Carbohydr. Polym. 98: 1311-1316. https://doi.org/10.1016/j.carbpol.2013.07.044.

M. J. E. C. Van Der Maarel, B. Van Der Veen, J. C. M. Uitdehaag, H. Leemhuis, L. Dijkhuizen. 2002. Properties and Applications of Starch-converting Enzymes of the α-amylase Family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2.

P. Kilonzo, A. Margaritis, M. Bergougnou. 2011. Effects of Surface Treatment and Process Parameters on Immobilization of Recombinant Yeast Cells by Adsorption to Fibrous Matrices. Bioresour. Technol. 102: 3662-3672. https://doi.org/10.1016/j.biortech.2010.11.055.




How to Cite

Baharudin, N. N. H., Che Man, R., Abdul Manas, N. H., Ahmad, R. A., & Mohd Zakaria, N. N. (2023). CELL IMMOBILIZATION FOR CYCLODEXTRIN PRODUCTION: MINI REVIEW. Jurnal Teknologi, 85(2), 111–120. https://doi.org/10.11113/jurnalteknologi.v85.18859



Science and Engineering