NITROGEN, POTASSIUM, AND SILICON FERTILIZATION TO ACHIEVE LOWER PANICLE BLAST SEVERITY AND IMPROVE YIELD COMPONENTS OF RICE USING RESPONSE SURFACE METHODOLOGY

Authors

  • NurulNahar Esa Paddy and Rice Research Centre, MARDI Seberang Perai, 13200 Kepala Batas, Pulau Pinang, Malaysia https://orcid.org/0000-0003-1880-1044
  • Siti Norsuha Misman Paddy and Rice Research Centre, MARDI Seberang Perai, 13200 Kepala Batas, Pulau Pinang, Malaysia
  • Maisarah Mohamad Saad Paddy and Rice Research Centre, MARDI Seberang Perai, 13200 Kepala Batas, Pulau Pinang, Malaysia https://orcid.org/0000-0003-3013-4897
  • Mohd Fitri Masarudin Paddy and Rice Research Centre, MARDI Seberang Perai, 13200 Kepala Batas, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18893

Keywords:

Central composite design, response surface methodology, rice yield, rice blast, optimal nutrients

Abstract

Rice blast is one of the most critical limiting factors for rice plant growth performance, and it occurs in 85 countries, causing 10-35% grain yield losses. Several findings have indicated the positive benefits of nitrogen (N), potassium (K), and Silicon (Si) fertilization on plant development, yield, and biotic stress relief. However, due to rice blast attacks, its growth, development, and yield may be restricted or limited by insufficient or unbalanced N, K, and Si fertilizers. This study was conducted to optimize the fertilization strategies for rice panicle blast control and improve rice grain yield. The methods used were Central Composite Design and Response Surface Methodology. The application of N, K and Si did not influence the number of spikelets per meter square, filled grain (%) and 1000- grain weight (g). An increase in K and Si significantly reduced the rice blast severity in the off-season 2021 and the main-season 2021/2022. On the other hand, only Si had influenced rice grain yield production. An increase in Si showed a positive linear trend in rice grain yield. Based on these results, panicle blast disease is expected to be controlled with the recommended rate of 104 N kg/ha, 42 P2O5, 80 kg K2O, and an additional 200 Si kg/ha, which minimizes the rice blast severity (%) but at the same time maximizes the rice grain yield. The findings of this study provide a scientific base and technical advice for high-yield rice grain-growing under panicle blast disease hot spot areas.

References

Che Omar, S., Shaharudin, A. and Tumin, S. A. 2019. The Status of the Paddy and Rice Industry in Malaysia. Khazanah Research Institute.

Ali, R. B. 2017. Economic and Policy Evaluations and Impacts of the National Rice Development Policy Strategies in Malaysia: Self-sufficiency, International Trade, and Food Security. Univerity of Arkansas, Fayetteville.

Ramli, N. N., Shamsudin, M. N., Mohamed, Z. and Radam, A. 2012. The Impact of Fertilizer Subsidy on Malaysia Paddy/rice Industry using a System Dynamics Approach. International Journal of Social Science and Humanity. 2(3): 213-219.

Nordin Md, S., Ahmad Rizal, A. R. and Yahya, J. 2015. Impak Komunikasi Terhadap Penerimaan Inovasi Penanaman Padi. Jurnal Pengurusan. 44: 35-45.

Doi: https://doi.org/10.17576/pengurusan-2015-44-04.

Aishah, A. W., Zauyah, S., Anuar, A. R. and Fauziah, C. I. 2010. Spatial Variability of Selected Chemical Characteristics of Paddy Soils in Sawah Sempadan, Selangor, Malaysia. Malaysian Journal of Soil Science. 14: 27-39.

Stewart, W. M., Dibb, D. W., Johnston, A. E. and Smyth, T. J. 2005. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agronomy Journal. 97(1): 1-6.

Doi: https://doi.org/10.2134/agronj2005.0001.

Hou, W., Xue, X., Li, X., Khan, M. R., Yan, J., Ren, T., Cong, R. and Lu, J. 2019. Interactive Effects of Nitrogen and Potassium On: Grain Yield, Nitrogen Uptake and Nitrogen Use Efficiency of Rice in Low Potassium Fertility Soil in China. Field Crops Research. 236: 14-23.

Doi: https://doi.org/10.1016/j.fcr.2019.03.006.

Jahan, A., Islam, A., Sarkar, M. I. U., Iqbal, M., Ahmed, M. N. and Islam, M. R. 2020. Nitrogen Response of Two High Yielding Rice Varieties as Influenced by Nitrogen Levels and Growing Seasons. Geology, Ecology, and Landscapes. 6(1): 24-31.

Doi: https://doi.org/10.1080/24749508.2020.1742509.

Shrestha, J., Kandel, M., Subedi, S. and Shah, K. K. 2020. Role of Nutrients in Rice (Oryza sativa L.): A Review. Agrica. 9: 53-62. Doi: https://doi.org/10.5958/2394-448x.2020.00008.5.

Zhang, J., Tong, T., Potcho, P. M., Huang, S., Ma, L. and Tang, X. 2020. Nitrogen Effects on Yield, Quality and Physiological Characteristics of Giant Rice. Agronomy. 10: 1816. Doi: https://doi.org/10.3390/agronomy10111816.

Vinod, K. K. and Heuer, S. 2012. Approaches Towards Nitrogen- and Phosphorus-efficient Rice. AoB Plants. 2012. Doi: https://doi.org/10.1093/aobpla/pls028.

Kumar, S., Pallavi, Chugh, C., Seem, K., Kumar, S., Vinod, K. K. and Mohapatra, T. 2021. Characterization of Contrasting Rice (Oryza sativa L.) Genotypes Reveals the Pi-efficient Schema for Phosphate Starvation Tolerance. BMC Plant Biology. 21(282).

Doi: https://doi.org/10.1186/s12870-021-03015-4.

Xu, X., Du, X., Wang, F., Sha, J., Chen, Q., Tian, G., Zhu, Z., Ge, S. and Jiang, Y. 2020. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in apple Dwarf Rootstock Seedlings. Frontiers in Plant Science. 11: 904.

Doi: https://doi.org/10.3389/fpls.2020.00904.

Mboyerwa, P. A., Kibret, K., Mtakwa, P. W. and Aschalew, A. 2021. Evaluation of Growth, Yield, and Water Productivity of Paddy Rice with Water-saving Irrigation and Optimization of Nitrogen Fertilization. Agronomy. 11: 1629. Doi: https://doi.org/10.3390/agronomy11081629.

Mwamba Kalala, A., Nyambilila Abdallah, A. and Jonson Mashambo, S. 2017. Optimum Levels of Phosphorus and Potassium for Rice in Lowland Areas of Kilombero District, Tanzania. Agriculture, Forestry and Fisheries. 6(1): 26-33. Doi: https://doi.org/10.11648/j.aff.20170601.14.

Ran, Y., Chen, H., Ruan, D., Liu, H., Wang, S., Tang, X. and Wu, W. 2018. Identification of Factors Affecting Rice Yield Gap in Southwest China: An Experimental Study. PLoS ONE. 13(11).

Doi: https://doi.org/10.1371/journal.pone.0206479.

Rashid, M. M., Ahmed, N., Jahan, M., Islam, K. S., Nansen, C., Willers, J. L. and Ali, M. P. 2017. Higher Fertilizer Inputs Increase Fitness Traits of Brown Planthopper in Rice. Scientific Reports. 7,: 4719.

Doi: https://doi.org/10.1038/s41598-017-05023-7.

Huang, H., Nguyen Thi Thu, T., He, X., Gravot, A., Bernillon, S., Ballini, E. and Morel, J. B. 2017. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-induced Susceptibility (NIS) to Rice Blast. Frontiers in Plant Science. 8(265).

Doi: https://doi.org/10.3389/fpls.2017.00265.

Long, D. H., Lee, F. N. and TeBeest, D. O. 2000. Effect of Nitrogen Fertilization on Disease Progress of Rice Blast on Susceptible and Resistant Cultivars. Plant Disease. 84(4): 403-409.

Doi: https://doi.org/10.1094/PDIS.2000.84.4.403.

Manzoor, N., Akbar, N., Ahmad Anjum, S., Ali, I., Shahid, M., Shakoor, A., Waseem Abbas, M., Hayat, K., Hamid, W. and Rashid, M. A. 2017. Interactive Effect of Different Nitrogen and Potash Levels on the Incidence of Bacterial Leaf Blight of Rice (Oryza sativa L.). Agricultural Sciences. 8: 56-63. Doi: https://doi.org/10.4236/as.2017.81005.

Zaiyuan, L., Bo, X., Tianhua, D., Yuekun, M., Xiaohai, T., Fulian, W. and Wang, W. 2021. Excessive Nitrogen Fertilization Favors the Colonization, Survival, and Development of Sogatella furcifera via Bottom-Up Effects. Plants. 10: 875.

Mohapatra, S., Rout, K., Khanda, C., Mukherjee, S., Mishra, A., Mahapatra, S. and Mishra, M. 2017. Role of Potassium on Insect Pests and Diseases of Puddled Transplanted Rice cv. Lalat in Odisha. Oryza. 54(3): 314-323.

Doi: https://doi.org/10.5958/2249-5266.2017.00043.1.

Sarwar, M. 2012. Effects of Potassium Fertilization on Population Build Up of Rice Stem Borers (lepidopteron pests) and Rice (Oryza sativa L.) Yield. Journal of Cereals and Oil Seeds. 3(1): 6-9.

Doi: https://doi.org/10.5897/JCO11.037.

Johnson, S. N., Karley, A. J., Gregory, P. J. and Brennan, R. M. 2017. Editorial: Crop traits for defense against pests and disease: durability, breakdown and future prospects. Frontiers in Plant Science. 8, 209 (2017). DOI:https://doi.org/10.3389/fpls.2017.00209.

Gisi, U. and Leadbeater, A. 2010. The Challenge of Chemical Control as Part of Integrated Pest Management. Journal of Plant Pathology. 92(4): 11-16. Doi: https://doi.org/10.4454/jpp.v92i4sup.336.

Dordas, C. 2008. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture: A Review. Sustainable Agriculture. 33-46: 443-460.

Doi: https://doi.org/10.1051/agro.

Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. and Guo, S. 2017. Role of Silicon on Plant–pathogen Interactions. Frontiers in Plant Science. 8(701): 1-14.

DOI: Https://doi.org/10.3389/fpls.2017.00701.

Han, Y. Q., Wen, J. H., Peng, Z. P., Zhang, D. Y. and Hou, M. L. 2018. Effects of Silicon Amendment on the Occurrence of Rice Insect Pests and Diseases in a Field Test. Journal of Integrative Agriculture. 17(10): 2172-2181.

Doi: https://doi.org/10.1016/S2095-3119(18)62035-0.

Laing, M. D., Gatarayiha, M. C. and Adandonon, A. 2006. Silicon Use for Pest Control in Agriculture: A Review. Proceedings of the South Africa Sugar cane Technology 278-286.

Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging Fungal Threats to Animal, Plant and Ecosystem Health. Nature. 484(7393): 1-18.

Doi: https://doi.org/doi:10.1038/nature10947.

Latiffah, Z. and Norsuha, M. 2018. The Pathogen and Control Management of Rice Blast Disease. Malaysian Journal of Microbiology. 14(7): 705-714.

Saad, A., Othman, O., Azlan, S., Alias, I. and Habibudin, H. 2004. Impact and Contribution of Resistant Varieties in Rice Pest Management in Malaysian Modern Rice Farming. MARDI Press.

Durgeshlal, C., Sahroj Khan, M., Prabhat, S. A. and Aaditya Prasad, Y. 2019. Antifungal Activity of Three Different Ethanolic Extract against Isolates from Diseased Rice Plant. Journal of Analytical Techniques and Research. 01(01): 47-63. Doi: https://doi.org/10.26502/jatri.007.

Gianessi, L. P. 2014. Importance of Pesticides for Growing Rice in South and South East Asia. International Pesticide Benefit Case Study. 4.

Suryadi, Y., Susilowati, D. N., Riana, E. and Mubarik, N. R. 2013. Management of Rice Blast Disease (Pyricularia oryzae) using Formulated Bacterial Consortium. Emirates Journal of Food and Agriculture. 25(5): 349-357.

Doi: https://doi.org/10.9755/ejfa.v25i5.12564.

Othman, O., Abu Hassan, D., Alias, I., Ayob, A. H., Azmi, A. R., Azmi, M., Badrulhadza, A., Maisarah, M. S., Muhamad, H., Saad, A., Sariam, O., Siti Norsuha, M., Syahrin, S. and Yahaya, H. 2008. Manual Teknologi Penanaman Padi Lestari. MARDI Press.

Hayashi, N., Kobayashi, N., Cruz, C. M. V and Fukuta, Y. 2009. Protocols for the Sampling of Diseased Specimens and Evaluation of Blast Disease in Rice. JIRCAS Working Report No. 63.

IRRI. 2013. Standard Evaluation System for Rice. International Rice Research Institute.

Shafaullah, Khan, M. A., Khan, N. A. and Mahmood, Y. 2011. Effects of Epidemiological Factors on the Incidence of Paddy Blast (Pyricularia oryzae) Disease. Pakistan Journal of Phytopathology. 23(2): 108-111.

Sardans, J. and Peñuelas, J. 2021. Potassium Control of Plant Functions : Ecological and Agricultural Implications. Plants. 10(419).

Doi:https://doi.org/https://doi.org/10.3390/plants10020419

Dobermann, A. and Fairhurst, T. 2000. Rice: Nutrient Disorders & Nutrient Management. Hanbook Series. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI).

Mukhomorov, V. and Anikina, L. 2011. Interrelation of Chemical Elements Content in Plants Under Conditions of Primary Soil Formation. Open Journal of Soil Science. 01(01): 1-7. Doi: https://doi.org/10.4236/ojss.2011.11001.

Li, R., Sun, Y., Wang, H. and Wang, H. 2022. Advances in Understanding Silicon Transporters and the Benefits to Silicon-associated Disease Resistance in Plants. Applied Sciences. 12(3282).

Doi: https://doi.org/10.3390/app12073282.

Yoshida, S. 1973. Effects of Temperature on Growth of the Rice Plant (Oryza sativa L.) in a Controlled Environment. Soil Science and Plant Nutrition. 19(4): 299-310.

Doi: Https://doi.org/10.1080/00380768.1973.10432599.

Jagadish, S. V. K., Craufurd, P. Q. and Wheeler, T. R. 2007. High Temperature Stress and Spikelet Fertility in Rice (Oryza sativa L.). Journal of Experimental Botany. 58(7): 1627-1635. Doi: https://doi.org/10.1093/jxb/erm003.

de Souza, N. M., Marschalek, R., Sangoi, L. and Weber, F. S. 2017. Spikelet Sterility in Rice Genotypes Affected by Temperature at Microsporogenesis. Revista Brasileira de Engenharia Agricola e Ambiental. 21(12): 817-821.

Doi: https://doi.org/10.1590/1807-1929/agriambi.v21n12p817-821.

Zhang, W., Cao, Z., Zhou, Q., Chen, J., Xu, G., Gu, J., Liu, L., Wang, Z. and Yang, J. 2016. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large and Small-grain Mutants of Rice. PLoS ONE. 11(10): 12.

Doi: https://doi.org/10.1371/journal.pone.0165321.

Jiang, H., Zhang, A., Liu, X. and Chen, J. 2022. Grain Size Associated Genes and the Molecular Regulatory Mechanism in Rice. International Journal of Molecular Sciences. 23(3169).

Doi: https://doi.org/10.3390/ijms23063169.

Chen, K., Łyskowski, A., Jaremko, Ł. and Jaremko, M. 2021. Genetic and Molecular Cactors Determining Grain Weight in Rice. Frontiers in Plant Science. 12(605799).

Doi: https://doi.org/10.3389/fpls.2021.605799.

Cuong, T. X., Ullah, H., Datta, A. and Hanh, T. C. 2017. Effects of Silicon-based Fertilizer on Growth, Yield and Nutrient Uptake of Rice in Tropical Zone of Vietnam. Rice Science. 24(5): 283-290.

Doi: https://doi.org/10.1016/j.rsci.2017.06.002.

Jafari, H., Dastan, S., Nasiri, A. R., Valaei, L. and Eslamii, H. R. 2013. Nitrogen and Silicon Application Facts on Rice Growth Parameters at Alborz Mountain Range. Electronic Journal of Biology. 9(4): 72-76.

Malav, J. K. and Ramani, V. P. 2017. Effect of silicon on nitrogen use efficiency, yield and nitrogen and silicon contents in rice under loamy sand soil. Research Journal of Chemistry and Environment. 21(4): 58-63.

Patil, A. A., Durgude, A. G., Pharande, A. L., Kadlag, A. D. and Nimbalkar, C. A. 2017. Effect of Calcium Silicate as a Silicon Source on Growth and Yield of Rice Plants. International Journal of Chemical Studies. 5(6): 545-549.

Savant, N. K., Dantnoff, L. E. and Snyder, G. H. 1997. Silicon Management Sustainable. Advances in Agronomy. 58: 151-199.

Alvarez, J. and Datnoff, L. E. 2001. The Economic Potential of Silicon for Integrated Management and Sustainable Rice Production. Crop Protection. 20: 43-48.

Doi: https://doi.org/10.1016/S0928-3420(01)80018-5.

Rodrigues, F. A. and Datnoff, L. E. 2005. Silicon and rice disease management. Fitopatologia Brasileira. 30(5): 457-469. Doi: https://doi.org/10.1590/s0100-41582005000500001.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

NITROGEN, POTASSIUM, AND SILICON FERTILIZATION TO ACHIEVE LOWER PANICLE BLAST SEVERITY AND IMPROVE YIELD COMPONENTS OF RICE USING RESPONSE SURFACE METHODOLOGY. (2023). Jurnal Teknologi, 85(5), 81-91. https://doi.org/10.11113/jurnalteknologi.v85.18893