ONTOLOGICAL, FULLY PROBABILISTIC KNOWLEDGE MODEL FOR HUMAN ACTIVITY RECOGNITION

Authors

  • Pouya Foudeh Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia https://orcid.org/0000-0002-9809-5751
  • Naomie Salim UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18942

Keywords:

Probabilistic ontologies, probabilistic modeling, probabilistic databases, ontology storage, human activity recognition

Abstract

Efficiency and scalability are obstacles that have not yet received a viable response from the human activity recognition research community. This paper proposes an activity recognition method. The knowledge model is in the form of ontology, the state-of-the-art in knowledge representation and reasoning. The ontology starts with probabilistic information about subjects’ low-level activities and location and then is populated with the assertion axioms learned from data or defined by the user. Unlike methods that choose only the most probable candidate from sensor readings, the proposed method keeps multiple candidates with the known degree of confidence for each one and involves them in decision making. Using this method, the system is more flexible to deal with unreliable data, readings from sensors, and the final recognition rate is improved. Besides, to resolve the scalability problem, a system is designed and implemented to do reasoning and storing in a relational database management system. Numerical evaluations and conceptual benchmarking prove the proposed system feasibility.

References

Patel, Ashish, and Jigarkumar Shah. 2019. Sensor-based Activity Recognition in the Context of Ambient Assisted Living Systems: A Review. Journal of Ambient Intelligence and Smart Environments. 11(4): 301-322. https://doi.org/10.3233/AIS-190529.

Boger, Jennifer, Pascal Poupart, Jesse Hoey, Craig Boutilier, Geoff Fernie, and Alex Mihailidis. 2005. A Decision-theoretic Approach to Task Assistance for Persons with Dementia. IJCAI. 1293-1299.

Liao, Lin, Dieter Fox, and Henry Kautz. 2007. Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields. The International Journal of Robotics Research. 26(1): 119-134. https://doi.org/10.1177/0278364907073775.

Liu, Li, Shu Wang, Guoxin Su, Bin Hu, Yuxin Peng, Qingyu Xiong, and Junhao Wen. 2017. A Framework of Mining Semantic-based Probabilistic Event Relations for Complex Activity Recognition. Information Sciences. 418: 13-33. https://doi.org/10.1016/j.ins.2017.07.022.

Gayathri, K. S., K. S. Easwarakumar, and Susan Elias. 2017. Probabilistic Ontology based Activity Recognition in Smart Homes using Markov Logic Network. Knowledge-Based Systems 121: 173-184. https://doi.org/10.1016/j.knosys.2017.01.025.

Henry A. Kautz and James F. Allen. 1986. Generalized Plan Recognition. Proceedings of the Fifth AAAI National Conference on Artificial Intelligence (AAAI'86). 32-37.

Rodríguez, Natalia Díaz, Manuel P. Cuéllar, Johan Lilius, and Miguel Delgado Calvo-Flores. 2014. A Survey on Ontologies for Human Behavior Recognition. ACM Computing Surveys (CSUR). 46(4): 43. https://doi.org/10.1145/2523819.

Chereshnev, Roman, and Attila Kertész-Farkas. 2018. RapidHARe: A Computationally Inexpensive Method for Real-time Human Activity Recognition from Wearable Sensors. Journal of Ambient Intelligence and Smart Environments. 10(5): 377-391. https://doi.org/10.3233/AIS-180497.

Chen, Liming, and Chris Nugent. 2009. Ontology-based Activity Recognition in Intelligent Pervasive Environments. International Journal of Web Information Systems. 5(4): 410-430. https://doi.org/10.1108/17440080911006199.

Chen, Liming, Chris Nugent, and George Okeyo. 2014. An Ontology-based Hybrid Approach to Activity Modeling for Smart Homes. IEEE Transactions on Human-machine Systems. 44(1): 92-105. https://doi.org/10.1109/THMS.2013.2293714.

Riboni, Daniele, and Claudio Bettini. 2011. OWL 2 Modeling and Reasoning with Complex Human Activities. Pervasive and Mobile Computing. 7(3): 379-395. https://doi.org/10.1016/j.pmcj.2011.02.001.

Riboni, Daniele, and Claudio Bettini. 2011. COSAR: Hybrid Reasoning for Context-aware Activity Recognition. Personal and Ubiquitous Computing. 15(3): 271-289. https://doi.org/10.1007/s00779-010-0331-7.

Palumbo, Filippo, Claudio Gallicchio, Rita Pucci, and Alessio Micheli. 2016. Human Activity Recognition using Multi Sensor Data Fusion based on Reservoir Computing. Journal of Ambient Intelligence and Smart Environments. 8(2): 87-107. https://doi.org/10.3233/AIS-160372.

Ni, Qin, Ivan Pau de la Cruz, and Ana Belen Garcia Hernando. 2016. A Foundational Ontology-based Model for Human Activity Representation in Smart Homes. Journal of Ambient Intelligence and Smart Environments. 8(1): 47-61. https://doi.org/10.3233/AIS-150359.

Philipose, Matthai, Kenneth P. Fishkin, Mike Perkowitz, Donald J. Patterson, Dieter Fox, Henry Kautz, and Dirk Hahnel. 2004. Inferring Activities from Interactions with Objects. IEEE Pervasive Computing. 3(4): 50-57. https://doi.org/10.1109/MPRV.2004.7.

Allen, James, H. Kautz, R. Pelavin, and J. Tennenberg. 1991. A Formal Theory of Plan Recognition and Its Implementation. Reasoning About Plans. 69-126.

Yamada, Naoharu, Kenji Sakamoto, Goro Kunito, Yoshinori Isoda, Kenichi Yamazaki, and Satoshi Tanaka. 2007. Applying Ontology and Probabilistic Model to Human Activity Recognition from Surrounding Things. IPSJ Digital Courier. 3: 506-517. https://doi.org/10.2197/ipsjdc.3.506.

Helaoui, Rim, Daniele Riboni, and Heiner Stuckenschmidt. 2013. A Probabilistic Ontological Framework for the Recognition of Multilevel Human Activities. Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 345-354. ACM. https://doi.org/10.1145/2493432.2493501.

Roy, Patrice C., Samina R. Abidi, and Syed SR Abidi. 2017. Possibilistic Activity Recognition with Uncertain Observations to Support Medication Adherence in an Assisted Ambient Living Setting. Knowledge-based Systems. 133: 156-173. https://doi.org/10.1016/j.knosys.2017.07.008.

Halpern, Joseph Y. 2017. Reasoning about Uncertainty. MIT Press.

Rodríguez, Natalia Díaz, Manuel P. Cuéllar, Johan Lilius, and Miguel Delgado Calvo-Flores. 2014. A Fuzzy Ontology for Semantic Modelling and Recognition of Human Behaviour. Knowledge-Based Systems. 66: 46-60. https://doi.org/10.1016/j.knosys.2014.04.016.

Noor, Mohd Halim Mohd, Zoran Salcic, I. Kevin, and Kai Wang. 2016. Enhancing Ontological Reasoning with Uncertainty Handling for Activity Recognition. Knowledge-Based Systems. 114: 47-60. https://doi.org/10.1016/j.knosys.2016.09.028.

Riboni, Daniele, Linda Pareschi, Laura Radaelli, and Claudio Bettini. 2011. Is Ontology-based Activity Recognition Really Effective? Pervasive Computing and Communications Workshops (PERCOM Workshops), 2011 IEEE International Conference on. 427-431. IEEE. https://doi.org/10.1109/PERCOMW.2011.5766927.

Gutierrez, Claudio, Carlos A. Hurtado, and Alejandro Vaisman. 2007. Introducing Time into RDF. IEEE Transactions on Knowledge and Data Engineering. 19(2). https://doi.org/10.1109/TKDE.2007.34.

Meditskos, Georgios, Stamatia Dasiopoulou, Vasiliki Efstathiou, and Ioannis Kompatsiaris. 2013. Sp-act: A Hybrid Framework for Complex Activity Recognition Combining Owl and Sparql Rules. Pervasive Computing and Communications Workshops (PERCOM Workshops), 2013 IEEE International Conference on. 25-30. IEEE. https://doi.org/10.1109/PerComW.2013.6529451.

Meditskos, Georgios, Stamatia Dasiopoulou, and Ioannis Kompatsiaris. 2015. MetaQ: A Knowledge-driven Framework for Context-aware Activity Recognition Combining SPARQL and OWL 2 Activity Patterns. Pervasive and Mobile Computing. 25: 104-124. https://doi.org/10.1016/j.pmcj.2015.01.007.

Meditskos, Georgios, and Ioannis Kompatsiaris. 2017. iKnow: Ontology-driven Situational Awareness for the Recognition of Activities of Daily Living. Pervasive and Mobile Computing. 40: 17-41. https://doi.org/10.1016/j.pmcj.2017.05.003.

Suciu, Dan, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic Databases. Synthesis Lectures on Data Management. 3(2). https://doi.org/10.2200/S00362ED1V01Y201105DTM016.

Da Costa, Paulo Cesar G., Kathryn B. Laskey, and Kenneth J. Laskey. 2008. PR-OWL: A Bayesian Ontology Language for the Semantic Web. Uncertainty Reasoning for the Semantic Web I. 88-107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89765-1_6.

Carvalho, Rommel N., Kathryn B. Laskey, and Paulo CG Costa. 2017. PR-OWL–A Language for Defining Probabilistic Ontologies. International Journal of Approximate Reasoning. 91: 56-79. https://doi.org/10.1016/j.ijar.2017.08.011.

Laskey, Kathryn Blackmond. 2008. MEBN: A Language for First-order Bayesian Knowledge Bases. Artificial intelligence. 172(2-3): 140-178. https://doi.org/10.1016/j.artint.2007.09.006.

Carvalho, Rommel N., Shou Matsumoto, Kathryn B. Laskey, Paulo CG Costa, Marcelo Ladeira, and Laécio L. Santos. 2013. Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil. Uncertainty Reasoning for the Semantic Web II. 19-40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35975-0_2.

Foudeh, Pouya, and Naomie Salim. 2012. A Holistic Approach to Duplicate Publication and Plagiarism Detection Using Probabilistic Ontologies. International Conference on Advanced Machine Learning Technologies and Applications. 566-574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_56.

Martinez-Cruz, Carmen, Ignacio J. Blanco, and M. Amparo Vila. 2012. Ontologies Versus Relational Databases: Are They So Different? A Comparison. Artificial Intelligence Review. 38(4): 271-290. https://doi.org/10.1007/s10462-011-9251-9.

Gali, Anuradha, Cindy X. Chen, Kajal T. Claypool, and Rosario Uceda-Sosa. 2004. From Ontology to Relational Databases. International Conference on Conceptual Modeling. 278-289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30466-1_26.

Vysniauskas, Ernestas, and Lina Nemuraite. 2006. Transforming Ontology Representation from OWL to Relational Database. Information Technology and Control. 35(3).

Vysniauskas, Ernestas, Lina Nemuraite, and Algirdas Sukys. 2010. A Hybrid Approach for Relating OWL 2 Ontologies and Relational Databases. International Conference on Business Informatics Research. 86-101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16101-8_8.

Al-Jadir, Lina, Christine Parent, and Stefano Spaccapietra. 2010. Reasoning with Large Ontologies Stored in Relational Databases: The OntoMinD Approach. Data & Knowledge Engineering. 69(11): 1158-1180. https://doi.org/10.1016/j.datak.2010.07.006.

Hazber, Mohamed, A. G., Ruixuan, Li, Xiwu, Gu, Guandong, Xu, and Yuhua, Li. 2015. Semantic SPARQL Query in a Relational Database based on Ontology Construction. Semantics, Knowledge, and Grids (SKG), 2015 11th International Conference on. 25-32. IEEE. https://doi.org/10.1109/SKG.2015.1.

Abburu, Sunitha, and Suresh Babu Golla. 2015. Effective Partitioning and Multiple RDF Indexing for Database Triple Store. Engineering Journal (Eng. J.). 19(5): 139-154. https://doi.org/10.4186/ej.2015.19.5.139.

Astrova, Irina, Nahum Korda, and Ahto Kalja. 2007. Storing OWL Ontologies in SQL Relational Databases. International Journal of Electrical, Computer and Systems Engineering. 1(4): 242-247. https://doi.org/10.5281/zenodo.1071690.

Pipitone, Arianna, Francesca Anastasio, and Roberto Pirrone. 2016. HOWERD: A Hidden Markov Model for Automatic OWL-ERD Alignment. 2016 IEEE Tenth International Conference on Semantic Computing (ICSC). 477-482. IEEE. https://doi.org/10.1109/ICSC.2016.76.

Udrea, Octavian, Deng, Yu, Edward, Hung, and V. S. Subrahmanian. 2005. Probabilistic Ontologies and Relational Databases. OTM Confederated International Conferences. On the Move to Meaningful Internet Systems. 1-17. Springer, Berlin, Heidelberg, https://doi.org/10.1007/11575771_1.

Manzoor, Atif, Claudia Villalonga, Alberto Calatroni, Hong-Linh Truong, Daniel Roggen, Schahram Dustdar, and Gerhard Tröster. 2010. Identifying Important Action Primitives for High Level Activity Recognition. European Conference on Smart Sensing and Context. 149-162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16982-3_12.

Sangeeta Mittal, Krishna Gopal and S. L. 2015. Maskara,Neutrosophic Concept Lattice based Approach for Computing Human Activities from Contexts. International Journal on Smart Sensing & Intelligent Systems. 8(3): 1525-1553.

Smarandache, Florentin. 1998. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press, Rehoboth.

Chavarriaga, Ricardo, Hesam Sagha, Alberto Calatroni, Sundara Tejaswi Digumarti, Gerhard Tröster, José del R. Millán, and Daniel Roggen. 2013. The Opportunity challenge: A Benchmark Database for On-body Sensor-based Activity Recognition. Pattern Recognition Letters. 34(15): 2033-2042. https://doi.org/10.1016/j.patrec.2012.12.014.

Foudeh, Pouya, Aida Khorshidtalab, and Naomie Salim. 2018. A Probabilistic Data-driven Method for Human Activity Recognition. Journal of Ambient Intelligence and Smart Environments. 10(5): 393-408. https://doi.org/10.3233/AIS-180496.

Lembo, Domenico, Daniele Pantaleone, Valerio Santarelli, and Domenico Fabio Savo. 2018. Drawing OWL 2 Ontologies with Eddy the editor. AI Communications Preprint. 1-17. https://doi.org/10.3233/AIC-18075.

Petasis, Georgios, Vangelis Karkaletsis, Georgios Paliouras, Anastasia Krithara, and Elias Zavitsanos. 2011. Ontology Population and Enrichment: State of the Art. Knowledge-driven Multimedia Information Extraction and Ontology Evolution. 134-166. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20795-2_6.

Merigó, José M., Montserrat Casanovas, and Jian-Bo Yang. 2014. Group Decision Making with Expertons and Uncertain Generalized Probabilistic Weighted Aggregation Operators. European Journal of Operational Research. 235(1): 215-224. https://doi.org/10.1016/j.ejor.2013.10.011.

Hiemstra, D. 2009. Probability Smoothing. Encyclopedia of Database Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9_936.

Kim, Tae Han, Darko Mušicki, Taek Lyul Song, and Chul Mok Lee. 2015. Smoothing Joint Integrated Probabilistic Data Association. IET Radar, Sonar & Navigation. 9(1): 62-66. https://doi.org/10.1049/iet-rsn.2013.0347.

Xu, Zeshui, and Qing-Li Da. 2003. An Overview of Operators for Aggregating Information. International Journal of intelligent Systems. 18(9): 953-969. https://doi.org/10.1002/int.10127.

Civitarese, Gabriele, Claudio Bettini, Timo Sztyler, Daniele Riboni, and Heiner Stuckenschmidt. 2011. Newnectar: Collaborative Active Learning for Knowledge-based Probabilistic Activity Recognition. Pervasive and Mobile Computing. 56: 88-105. https://doi.org/10.1016/j.pmcj.2019.04.006.

Date, Chris. 2005. Database in Depth: Relational Theory for Practitioners. O'Reilly Media, Inc.

Chaudhuri, Surajit, Usama Fayyad, and Jeff Bernhardt. 1999. Scalable Classification over SQL Databases. Proceeding of 15th International Conference on Data Engineering. 470-479. IEEE. https://doi.org/10.1109/ICDE.1999.754963.

Zolfaghari, Samaneh, Mohammad Reza Keyvanpour, and Raziyeh Zall. 2017. Analytical Review on Ontological Human Activity Recognition Approaches. International Journal of E-Business Research (IJEBR). 13(2): 58-78. https://doi.org/10.4018/IJEBR.2017040104.

Downloads

Published

2023-02-23

How to Cite

Foudeh, P., & Salim, N. (2023). ONTOLOGICAL, FULLY PROBABILISTIC KNOWLEDGE MODEL FOR HUMAN ACTIVITY RECOGNITION. Jurnal Teknologi, 85(2), 183–199. https://doi.org/10.11113/jurnalteknologi.v85.18942

Issue

Section

Science and Engineering