HPTLC PROFILING AND FTIR FINGERPRINTING COUPLED WITH CHEMOMETRIC ANALYSIS OF MALAYSIAN STINGLESS BEE PROPOLIS
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.19050Keywords:
Propolis, HPTLC, FTIR, PCA, HCAAbstract
Propolis is a natural substance produced by the bees to protect their hive. The present work reports the utilization of chemical profiling and fingerprinting combined with multivariate analysis for discrimination of the geographical origin of Malaysian stingless bee propolis. High Performance Thin Layer Chromatography (HPTLC) has been performed to profile the chemical composition of Geniotrigona thoracica propolis from different localities in East Coast of Peninsular Malaysia namely Besut, Terengganu (BST), Dungun, Terengganu (DGN), Lundang, Kelantan (LDG), Tanah Merah, Kelantan (TM) and Gua Musang, Kelantan (GM). The obtained HPTLC profiles showed the presence of flavonoids, phenolics and terpenoids in propolis. The chemical fingerprinting was obtained through Fourier Transform Infrared (FTIR) spectroscopy. Chemometric analysis on FTIR dataset using principal component analysis (PCA) and hierarchical cluster analysis (HCA) have classified the propolis into three major groups according to their sampling locations. Chemical fingerprinting analysis on the functional group via FTIR and chemometric revealed that the locations of propolis have direct correlation with the chemical composition, thus affecting the biological activities of propolis. Both chemical marker and chemical fingerprinting analysis are important tools in propolis standardization.
References
Crane, E. 1988. Beekeeping: Science. Heinemann: Practice and World Resources. London: Oxford.
Bankova, V., Popova, M., and Trusheva, B. 2014. Propolis Volatile Compounds: Chemical Diversity and Biological Activity: A Review. Chemistry Central Journal. 8(1): 1-8. DOI: https://doi.org/10.1186/1752-153X-8-28.
Pasupuleti, V. R., Sammugam, L., Ramesh, N., and Gan, S. H. 2017. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity. 2017: 1-21.
DOI: https://doi.org/10.1155/2017/1259510.
Torlak, E., and Sert, D. 2013. Antibacterial Effectiveness of Chitosan–Propolis Coated Polypropylene Films against Foodborne Pathogens. International Journal of Biological Macromolecules. 60: 52-55.
DOI: https://doi.org/10.1016/j.ijbiomac.2013.05.013.
Kustiawan, P. M., Puthong, S., Arung, E. T., and Chanchao, C. 2014. In Vitro Cytotoxicity of Indonesian Stingless Bee Products against Human Cancer Cell Lines. Asian Pacific Journal of Tropical Biomedicine. 4(7): 549-556.
DOI: https://doi.org/10.12980/APJTB.4.2014APJTB-2013-0039.
Bankova V. 2005. Chemical Diversity of Propolis and the Problem of Standardization. Journal of Ethnopharmacology. 100(1-2): 114-117.
DOI: https://doi.org/10.1016/j.jep.2005.05.004.
Cheng, H., Qin, Z. H., Guo, X. F., Hu, X. S., and Wu, J. H. 2013. Geographical Origin Identification of Propolis Using GC–MS and Electronic Nose Combined with Principal Component Analysis. Food Research International. 51(2): 813-822.
DOI: https://doi.org/10.1016/j.foodres.2013.01.053.
Mot, A. C., Soponar, F. and Sârbu, C. 2010. Multivariate Analysis of Reflectance Spectra from Propolis: Geographical Variation in Romanian Samples. Talanta. 81(3): 1010-1015.
DOI: https://doi.org/10.1016/j.talanta.2010.01.052.
Paganotti, R. S. N., Rezende J. D. C., and Barbeira, P. J. S. 2014. Discrimination between Producing Regions of Brazilian Propolis by UV-VIS Spectroscopy and Partial Least Squares Discriminant Analysis. Current Analytical Chemistry. 10(4): 537-544.
DOI: https://doi.org/10.2174/15734110113099990030.
Watson, D. G., Peyfoon, E., Zheng, L., Lu, D., Seidel, V., Johnston, B., Parkinson, J. A. and Fearnley, J. 2006. Application of Principal Components Analysis to 1H‐NMR Data Obtained from Propolis Samples of Different Geographical Origin. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques. 17(5): 323-331.
DOI: https://doi.org/10.1002/pca.921.
Kasote, D. M., Pawar, M. V., Bhatia, R. S., Nandre, V. S., Gundu, S. S., Jagtap, S. D., and Kulkarni, M. V. 2017. HPLC, NMR Based Chemical Profiling and Biological Characterisation of Indian Propolis. Fitoterapia. 122: 52-60. DOI: https://doi.org/10.1016/j.fitote.2017.08.011.
Stavropoulou, M. I., Stathopoulou, K., Cheilari, A., Benaki, D., Gardikis, K., Chinou, I., and Aligiannis, N. 2021. NMR Metabolic Profiling of Greek Propolis Samples: Comparative Evaluation of Their Phytochemical Compositions and Investigation of Their Anti-Ageing and Antioxidant Properties. Journal of Pharmaceutical and Biomedical Analysis. 194: 113814.
DOI: https://doi.org/10.1016/j.jpba.2020.113814.
Morlock, G., and Schwack, W. 2010. Hyphenations in Planar Chromatography. Journal of Chromatography A. 1217(43): 6600-6609.
DOI: https://doi.org/10.1016/j.chroma.2010.04.058.
Bhargava, A., Shrivastava, P., and Tilwari, A. 2021. HPTLC Analysis of Fumaria Parviflora (Lam.) Methanolic Extract of Whole Plant. Future Journal of Pharmaceutical Sciences. 7(1): 1-9.
DOI: https://doi.org/10.1186/s43094-020-00150-x.
Rangnathrao, T. S., and Shanmugasundaram, P. 2018. Preliminary Phytochemical Screening and HPTLC Method for Qualitative Determination of Phytochemical Compounds in Extract of Ehretia Laevis Roxb. Journal of Pharmacognosy and Phytochemistry. 7(6): 867-874.
DOI: https://doi.org/10.21276/IJRDPL.2278-0238.2018.7(6).3150-3154.
Rouhani, M. 2019. Modeling and Optimization of Ultrasound-Assisted Green Extraction and Rapid HPTLC Analysis of Stevioside from Stevia Rebaudiana. Industrial Crops and Products. 132: 226-235.
DOI: https://doi.org/10.1016/j.indcrop.2019.02.029.
Pedan, V., Weber, C., Do, T., Fischer, N., Reich, E., and Rohn, S. 2018. HPTLC Fingerprint Profile Analysis of Cocoa Proanthocyanidins Depending on Origin and Genotype. Food Chemistry. 267: 277-287.
DOI: https://doi.org/10.1016/j.foodchem.2017.08.109.
Opsenica, Milojković D., Ristivojević, P., Trifković, J., Vovk, I., Lušić, D., and Tešić, Ž. 2016. TLC Fingerprinting and Pattern Recognition Methods in the Assessment of Authenticity of Poplar-Type Propolis. Journal of Chromatographic Science. 54(7): 1077-1083.
DOI: https://doi.org/10.1093/chromsci/bmw024.
Guzelmeric, E., Ristivojević, P., Trifković, J., Dastan, T., Yilmaz, O., Cengiz, O., and Yesilada, E. 2018. Authentication of Turkish Propolis Through HPTLC Fingerprints Combined with Multivariate Analysis and Palynological Data and Their Comparative Antioxidant Activity. LWT. 87: 23-32.
DOI: https://doi.org/10.1016/j.lwt.2017.08.060.
Thirugnanasampandan, R., Raveendran, S. B., and Jayakumar, R. 2012. Analysis of Chemical Composition and Bioactive Property Evaluation of Indian Propolis. Asian Pacific Journal of Tropical Biomedicine. 2(8): 651-654.
DOI: https://doi.org/10.1016/S2221-1691(12)60114-2z.
Ristivojević, P., Dimkić, I., Guzelmeric, E., Trifković, J., Knežević, M., Berić, T., Yesilada, E., Milojković-Opsenica, D. and Stanković, S. 2018. Profiling of Turkish Propolis Subtypes: Comparative Evaluation of Their Phytochemical Compositions, Antioxidant and Antimicrobial Activities. LWT. 95: 367-379.
DOI: https://doi.org/10.1016/j.lwt.2018.04.063.
Tugba Degirmencioglu, H., Guzelmeric, E., Yuksel, P. I., Kırmızıbekmez, H., Deniz, I., and Yesilada, E. 2019. A New Type of Anatolian Propolis: Evaluation of Its Chemical Composition, Activity Profile and Botanical Origin. Chemistry & Biodiversity. 16(12): 1900492.
DOI: https://doi.org/10.1002/cbdv.201900492.
Azemin, A., Md-Zin, N. B., Mohd-Rodi, M. M., Kim-Chee, A. S., Zakaria, A. J., and Mohd, K. S. 2017. Application of Metabolite Profiling and Antioxidant Activity in Assessing the Quality of Processed and Unprocessed Stingless Bee’s Propolis. Journal of Fundamental and Applied Sciences. 9(2S): 637-660.
DOI: https://doi.org/10.4314/jfas.v9i2s.40.
Sivakesava, S., and Irudayaraj, J. 2001. Prediction of Inverted Cane Sugar Adulteration of Honey by Fourier Transform Infrared Spectroscopy. Journal of Food Science. 66(7): 972-978.
DOI: https://doi.org/10.1111/j.1365-2621.2001.tb08221.x.
Ferreira, D., Barros, A., Coimbra, M. A., and Delgadillo, I. 2001. Use of FT-IR Spectroscopy to Follow the Effect of Processing in Cell Wall Polysaccharide Extracts of a Sun-Dried Pear. Carbohydrate Polymers. 45(2): 175-182.
DOI: https://doi.org/10.1016/S0144-8617(00)00320-9.
Fukusaki, E., and Kobayashi, A. 2005. Plant Metabolomics: Potential for Practical Operation. Journal of Bioscience and Bioengineering. 100(4): 347-354.
DOI: https://doi.org/10.1263/jbb.100.347.
Coelho, M. T., Valério, F. A., Pedro, S. I., and Anjos, O. M. S. D. 2020. Application of FTIR-ATR to Discriminate Peach Nectars with Higher and Lower Sugar Contents. Brazilian Journal of Food Technology. 23: 1-10.
DOI: https://doi.org/10.1590/1981-6723.19418.
Man, Y. B. C. and Rohman, A. 2013. Analysis of Canola Oil in Virgin Coconut Oil using FTIR Spectroscopy and Chemometrics. Journal of Food and Pharmaceutical Sciences. 1(1): 5-9.
DOI: https://doi.org/10.14499/jfps.
Pandurangan, M. K., Murugesan, S., and Gajivaradhan, S. N. 2017. Detection of Adulteration of Coconut Oil using Fourier Transform Infrared Spectroscopy and Chemometrics. Material Science. 2(6): 46-51.
Neves, M. D. G., and Poppi, R. J. 2020. Authentication and Identification of Adulterants in Virgin Coconut Oil using ATR/FTIR in Tandem with DD-SIMCA One Class Modeling. Talanta. 219: 121338.
DOI: https://doi.org/10.1016/j.talanta.2020.121338.
Teye, E., Huang, X. Y., Lei, W., and Dai, H. 2014. Feasibility Study on the Use of Fourier Transform Near-Infrared Spectroscopy Together with Chemometrics to Discriminate and Quantify Adulteration in Cocoa Beans. Food Research International. 55: 288-293.
DOI: https://doi.org/10.1016/j.foodres.2013.11.021.
Duarte, I. F., Barros, A., Almeida, C., Spraul, M., and Gil, A. M. 2004. Multivariate Analysis of NMR and FTIR Data as a Potential Tool for the Quality Control of Beer. Journal of Agricultural and Food Chemistry. 52(5): 1031-1038.
DOI: https://doi.org/10.1021/jf030659z.
Lachenmeier, D. W. 2007. Rapid Quality Control of Spirit Drinks and Beer using Multivariate Data Analysis of Fourier Transform Infrared Spectra. Food Chemistry. 101(2): 825-832.
DOI: https://doi.org/10.1016/j.foodchem.2005.12.032.
Kędzierska-Matysek, M., Teter, A., Florek, M., Matwijczuk, A., Niemczynowicz, A., Matwijczuk, A., Czernel, G., Skalecki, P. and Gładyszewska, B. 2021. Use of Physicochemical, FTIR and Chemometric Analysis for Quality Assessment of Selected Monofloral Honeys. Journal of Apicultural Research. 1-10.
DOI: https://doi.org/10.1080/00218839.2021.1900637.
Zeghoud, S., Rebiai, A., Hemmami, H., Seghir, B. B., Elboughdiri, N., Ghareba, S., Ghernaout, D. and Abbas, N. 2021. ATR–FTIR Spectroscopy, HPLC Chromatography, and Multivariate Analysis for Controlling Bee Pollen Quality in Some Algerian Regions. ACS Omega. 6(7): 4878-4887.
DOI: https://doi.org/10.1021/acsomega.0c05816.
Cebi, N., Bozkurt, F., Yilmaz, M. T., and Sagdic, O. 2020. An Evaluation of FTIR Spectroscopy for Prediction of Royal Jelly Content in Hive Products. Journal of Apicultural Research. 59(2): 146-155.
DOI: https://doi.org/10.1080/00218839.2019.1707009.
Fangio, M. F., Orallo, D. E., Gende, L. B. and Churio, M. S. 2019. Chemical Characterization and Antimicrobial Activity against Paenibacillus Larvae of Propolis from Buenos Aires Province, Argentina. Journal of Apicultural Research. 58(4): 626-638.
DOI: https://doi.org/10.1080/00218839.2019.1601318.
Jolliffe, I. T. 2002. Principal Component Analysis for Special Types of Data. New York: Springer.
Ami, D., Mereghetti, P., and Doglia, S. M. 2013. Multivariate Analysis for Fourier Transform Infrared Spectra of Complex Biological Systems and Processes. Multivariate Analysis in Management, Engineering and the Sciences. 189-220. DOI: https://doi.org/10.5772/53850.
Gardana, C., Scaglianti, M., Pietta, P., & Simonetti, P. 2007. Analysis of the Polyphenolic Fraction of Propolis from Different Sources by Liquid Chromatography–tandem Mass Spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 45(3): 390-399.
DOI: https://doi.org/10/1016/j.jpba.2007.06.022.
Hegazi, A. G., & Abd El Hady, F. K. 2002. Egyptian Propolis: 3. Antioxidant, Antimicrobial Activities and Chemical Composition of Propolis from Reclaimed Lands. Zeitschrift für Naturforschung C. 57(3-4): 395-402.
DOI: https://doi/org/10/1515/znc-2002-3-432.
Merck, E. H. 1980. Révélateurs Pour La Chromatographie En Couche Mince et Sur Papier. Darmstadt.
Lagnika, L. 2005. Etude phytochimique et activité antipaludique de substances naturelles issues de plantes Béninoises. Strasbourg, Université Louis Pasteur de Strasbourg/Université d’Abomey-calavi, Bénin. 179-185.
Ladyguina, E. Y., Safronitch, L. N., Otriachenkova, V. E., Bolandina, I. A. and Grinkevitch, N. I. 1983. Analyse chimique des plantes médicinales. Edition Moska. Vischaya Chkola. 46-347.
Ibrahim, N., Niza, N. F. S. M., Rodi, M. M., Zakaria, A. J., Ismail, Z., and Mohd, K. S. 2016. Chemical and Biological Analyses of Malaysian Stingless Bee Propolis Extracts. Malaysian Journal of Analytical Sciences. 20(2): 413-422. DOI: https://doi.org/10.17576/mjas-2016-2002-26.
Hanson, J. R. 1977. Terpenoids and Steroids: A Review of Chemical Literature. New York, USA: Specialist Periodical Reports, CRC Press.
DOI: https://doi.org/10.1039/9781847557063.
Raut, J. S., and Karuppayil, S. M. 2014. A Status Review on the Medicinal Properties of Essential Oils. Industrial Crops and Products. 62: 250-264.
DOI: https://doi.org/10.1016/j.indcrop.2014.05.055.
Lesgards, J. F., Baldovini, N., Vidal, N., and Pietri, S. 2014. Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review. Phytotherapy Research. 28(10): 1423-1446.
DOI: https://doi.org/10.1002/ptr.5165.
Georgiev, M. I., Ivanovska, N., Alipieva, K., Dimitrova, P., and Verpoorte, R. 2013. Harpagoside: from Kalahari Desert to Pharmacy Shelf. Phytochemistry. 92: 8-15.
DOI: https://doi.org/10.1016/j.phytochem.2013.04.009.
Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. R. 2015. Introduction to Spectroscopy. Stamford: Cengage Learning.
Awang, N., Ali, N., Abd Majid, F. A., Hamzah, S., and Abd Razak, S. B. 2018. Total Flavonoids and Phenolic Contents of Sticky and Hard Propolis from 10 Species of Indo-Malayan Stingless Bees. Malaysian Journal of Analytical Sciences. 22(5): 877-884.
DOI: https://doi.org/10.17576/mjas-2018-2205-15.
Badiazaman, A. A. M., Zin, N. B. M., Annisava, A. R., Nafi, N. E. M., and Mohd, K. S. 2019. Phytochemical Screening and Antioxidant Propertiesof Stingless Bee Geniotrigona Thoracica Propolis. Malaysian Journal of Fundamental and Applied Sciences. 15(2-1): 330-335.
DOI: https://doi.org/10.11113/mjfas.v15n2-1.1557.
Nafi, N. M., Zin, N. B. M., Pauzi, N., Khadar, A. S. A., Anisava, A. R., Badiazaman, A. A. M., and Mohd, K. S. 2019. Cytotoxicity, Antioxidant and Phytochemical Screening of Propolis Extracts from Four Different Malaysian Stingless Bee Species. Malaysian Journal of Fundamental and Applied Sciences. 15(2-1): 307-312.
DOI: https://doi.org/10.11113/mjfas.v15n2-1.1542.
Abdullah, N. A., Zullkiflee, N., Zaini, S. N. Z., Taha, H., Hashim, F., and Usman, A. 2020. Phytochemicals, Mineral Contents, Antioxidants, and Antimicrobial Activities of Propolis Produced by Brunei Stingless Bees Geniotrigona Thoracica, Heterotrigona Itama, and Tetrigona Binghami. Saudi Journal of Biological Sciences. 27(11): 2902-2911.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.