Proportional Odds Model Affiliate with Random-Effect Longitudinal Model
DOI:
https://doi.org/10.11113/jt.v63.1906Keywords:
Joint model, longitudinal model, maximum likelihood estimation, proportional odds (PO) modelAbstract
Joint survival-longitudinal analysis gains popularity in recent clinical studies. A proportional hazards (PH) model in survival sub-model is commonly an alternative path to simplify a complex covariates hazard model into a regression model. The PH model however closed only to the Weibull distribution, brought about inappropriate application for the log-logistic observations. Proportional odds (PO) model in that case raised forward to perform similarly with the PH model. The subsequent modelling study is therefore producing a joint PO-longitudinal analysis rather than a widely applicable joint PH-longitudinal analysis. Latent parameters is introduced as a linkage technique between the two sub-models. Investigation in this study relies on the simulation statistics in which the survival time-to-event data and longitudinal measurements are both influenced by a covariate effects. The repeatedly measures data additionally allow for different kind of missingness mechanisms. Maximum likelihood estimation method is applied to the joint model parameters estimation. The performance of the joint model and separated sub-models are then be compared. The illustrated results contributed better estimators on the joint model instead of separated model.
References
D. R. Cox. 1972. Regression Models and Life-Tables (with discussion). Journal of the Royal Statistical Society. Series B (Methodological). 34(2): 187–220.
J. P. Klein, M. L. Moeschberger. 2003. Survival Analysis: Technique for Censored and Truncated Data. 2nd ed. New York: Springer Science + Business Media, LLC.
D. Collett. 2003. Modelling Survival Data in Medical Research. 2nd ed. United States of America: Chapman & Hall/CRC. 223–227.
M. S. Wulfsohn, A. A. Tsiatis. 1997. A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics. 53: 330–339.
R. Henderson, P. Diggle, A. Dobson. 2000. Joint Modelling of Longitudinal Measurement and Event Time Data. Biostatistics. 1(4): 465–480.
Guo, X. and B. P. Carlin. 2004. Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages. The American Statistician. 58(1): 1–9.
A. A. Tsiatis, M. Davidian. 2004. Joint Modeling of Longitudinal and Time-To-Event Data: An Overview. Statistica Sinica. 14: 809–834.
J. G. Ibrahim, H. Chu, L. M. Chen. 2010. Basic Concepts and Methods for Joint Models of Longitudinal and Survival Data. Journal of Clinical Oncology. 28(16): 2796–2801.
S. Bennett. 1983a. Log-logistic Regression Model for Survival Data. Appl. Statist. 32(2): 165–171.
S. Bennett. 1983b. Analysis of Survival Data by the Proportional Odds Model. Statistics in Medicine. 2: 273–277.
S. A.Murphy, A.J. Rossini, A. W. Van Der Vaart. 1997. Maximum Likelihood Estimation in the Proportional Odds Model. Journal of the American Statistical Association. 92(439): 968–976.
A. N. Pettitt. 1982. Inference for the Linear Model Using a Likelihood Based On Ranks. J. R. Statist. Soc. B. 44(2): 234–243.
A. N. Pettitt. 1983. Approximate Methods Using Ranks for Regression With Censored Data. Biometrika. 70(1): 121–132.
A. N. Pettitt. 1984. Proportional Odds Models for Survival Data and Estimates Using Ranks. Appl. Statist. 32(2): 169–175.
D. B. Dabrowska, K. A. Doksum. 1988. Estimation and Testing in a Two-Sample Generalized Odds-Rate Model. Journal of the American Statistical Association. 83(403): 744–749.
S. C. Cheng, L. J. Wei, Z. Ying. 1995. Analysis of Transformation Models with Censored Data. Biometrika. 82(4): 835–845.
X. Shen. 1998. Proportional Odds Regression and Sieve Maximum Likelihood Estimation. Biometrika. 85(1): 165–177.
D. R. Hunter, K. Lange. 2002. Computing Estimates in the Proportional Odds Model. Ann. Inst. Statist. Math. 54(1): 155–168.
N. M. Laird, J. H. Ware. 1982. Random-Effects for Longitudinal Data. Biometrics. 38: 963–974.
H. Goldstein. 1986. Multilevel Mixed Linear Model Analysis Using Iterative Generalized Least Square. Biometrika. 73: 43–56.
P. Diggle, M. G. Kenward. 1994. Informative Dropout in Longitudinal Data Analysis (with discussion). Applied Statistics. 43: 49–94.
W. Y. Chin, Z. M. Khalid, M. K., Ho. 2011. Analysis of Repeated Measures via Simulation. Simposium Kebangsaan Sains Matematik (SKSM 19). 9–11 November (unpublished).
P. J. Diggle. 1988. An Approach to the Analysis of Repeated Measurements. Biometrics. 44(4): 959–971.
I. Mohamad. 2003. Data Analysis in the Presence of Missing Data. PhD Thesis: Lanchester University.
M. K. Ho, F. Yusof, I. Mohamad. 2012. Imputation of Missing Data with Different Mechanism. Jurnal Teknologi. 57 (Sciences & Engineering) Suppl 1: 57–67.
P. D. Allison. The SAGE Handbook of Quantitative Methods in Psychology. 2009. London: SAGE Publications Ltd. Chapter 4, Missing Data. 72–89.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.