Parameter Estimation of Lotka-Volterra Model : A Two-Step Model

Authors

  • Haliza Abd. Rahman Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Arifah Bahar Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhayati Rosli Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v63.1907

Keywords:

Stochastic differential equation, regression spline, Bayesian approach, truncated power series basis, Lotka-Volterra model

Abstract

The deterministic power law logistic model is used to describe density-dependent population growth for cases when ordinary logistic model is found to be insufficient. This paper estimates the parameters of stochastic power law logistic model specifically the Lotka-Volterra model by employing the two-step approach. The Bayesian approach is implemented in the first step of estimating the regression spline parameters. Combining the existing and proposed nonparametric criterion, the structural parameters of SDE are estimated in the second step. Results indicate high percentage of accuracy of the estimated diffusion parameter of Lotka-Volterra model supporting the adequacy of the proposed criterion as an alternative to the classical methods.

References

Brunel, N. 2008. Parameter Estimation of ODE’s via Nonparametric Estimators. Electronic Journal of Statistics. 2: 1242–1267.

Budiantara, I. N , 2001. Aplikasi Spline Estimator Terbobot. Jurnal Teknik Industri. 3(2): 57–62.

Calderon, C. P., Martinez, J. G., Carrol, R. J. and Sorensen, D. C. 2010. P-Splines Using Derivative Information. Multiscale Modelling and Simulation. 8(4): 1562–1580.

Eubank, R. L. 1988. Spline Smoothing and Non parametric Regression. New York: Marcel-Dekker.

Hunt, D. L and Li, C-S. 2006. A Regression Spline Model for Developmental Toxicity Data. Toxicological Sciences. 92(1): 329–334.

Lang, S. and Brezger. 2004. Bayesian P-Splines. Journal of Computational and Graphical Statistics. 13: 183–212.

Leathwick, J. R., Rowe, D., Richardson, J., Elith, J. and Hastie, T. 2005. Using Multivariate Adaptive Regression Splines to Predict the Distributions of New Zealand’s Freshwater Diadromous Fish. Freshwater Biology. 50: 2034–2052.

Lee, T. C. M. 2002. On Algorithms For Ordinary Least Squares Regression Spline Fitting: A Comparative Study. Journal of Statistical Computation and Simulation. 72(8): 647–663.

Li, M. and Yu, Y.2006. Journal of Data Science. A Robust Approach to the Interest Rate. Term Structure Estimation. 4:169–188.

Mao, X. 2011.Stationary Distribution of Stochastic Population Systems. Systems and Control Letters. 398–405.

Molinari, N., Durand, J. F, Sabatier, R. 2004. Bounded Optimal Knots for Regression Splines. Computational Statistics & Data Analysis. 45: 159–178.

Pang, S. and Deng, F. and Mao, X. 2008.Asymptotic Properties of Stochastic Population Dynamics, Dynamics of Continuous Discrete and Impulsive Systems Series A. 15a: 603–620.

Taylan, P. ,Weber, G-W., Kropat, E. 2008. Approximation of Stochastic Differential Equations by Additive Models Using Splines and Conic Programming. International Journal of Computing Anticipatory Systems. 21: 341–352.

Varziri, M.S., McAuley, K.B, McLellan, P.J. 2008. Parameter and state Estimation in Nonlinear Stochastic Continuous-time Dynamic Models with Unknown Disturbance Intensity. The Canadian Journal of Chemical Engineering. 86(5): 828–837.

Varah, J. M. 1982. A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations. SIAM Journal of Scientific Statistical Computing. 3(1): 28–46.

Wallstrom, G., Liebner, J. L., Kass, R. E. 2008. An Implementation of Bayesian Adaptive Regression Splines (BARS) in C with S and R wrappers. Journal of Statistical Software. 26(1): 1–2.

Downloads

Published

2013-06-15

Issue

Section

Science and Engineering

How to Cite

Parameter Estimation of Lotka-Volterra Model : A Two-Step Model. (2013). Jurnal Teknologi (Sciences & Engineering), 63(2). https://doi.org/10.11113/jt.v63.1907