• Vo Tan Chau Faculty of Automotive Engineering Technology, Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam https://orcid.org/0000-0003-3113-6923
  • Tran Dang Long Faculty of Transportation Engineering, Ho Chi Minh City University of Technology (HCMUT)-268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
  • Huynh Ba Vang Faculty of Transportation Mechanical Engineering, The University of Da Nang, University of Science and Technology, 50000, Vietnam
  • Nguyen Minh Hoang Faculty of Automotive Engineering Technology, Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam
  • Ngo Hong Phuc Faculty of Automotive Engineering Technology, Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam
  • Nguyen Quoc Sy Faculty of Automotive Engineering Technology, Industrial University of Ho Chi Minh City (IUH), 12 Nguyen Van Bao Street, Go Vap District, Ho Chi Minh City, Vietnam




Common-rail system, diesel engine, injection rate characteristics, zuech’s method, solenoid injector


The combustion of diesel engines is mainly controlled by fuel injection. Determining the fuel injection flow rate combined with the common-rail fuel injection system is a key solution to effectively improve engine performance and exhaust emissions. This work aims to investigate the influence of high injection pressures with a 6-holes-solenoid common rail injector on the injection rate characteristics in the range of 400 bar to 1600 bar, and a constant injector energizing time of 1.5 ms. The injection rate characteristics were carried out based on the pressure difference in the Zuech measuring chamber and synchronized data in real-time. The results showed that the increase of the mentioned injection pressures caused the decrease of hydraulic injection delay from 0.5 ms to 0.25 ms and expansion of the injector opening angle profile. In addition, the actual opening injection interval was prolonged as compared to the injector control signal. An increasing trend of fuel discharge coefficient was realized as higher injection pressure.


N. T. Anh and N. T. M. Tan. 2021. [Online]. Available: https://drvn.gov.vn/tin-tuc/tin-tuc-su-kien/van-de-o-nhiem-moi-truong-do-hoat-dong-giao-thong-do-thi-gay.html?site=20830. [Accessed 01 04 2022].

K. Tanabe, S. Kohketsu and S. Nakayama, 2005. Effect of Fuel Injection Rate Control on Reduction of Emissions and Fuel Consumption in a Heavy Duty DI Diesel Engine. SAE Technical Paper.

A. Takumura, S. Fukushima, Y. Omori and T. Kamimoto. 1989. Development of a New Measurement Tool for Fuel Injection Rate in Diesel Engines. SAE Transactions. 409-414.

N. Intarat, L. Liu, D. Liu, X. Ma, and K. Nishida. 2020. An Analysis on the Effects of the Fuel Injection Rate Shape of the Diesel Spray Mixing Process Using a Numerical Simulation. Applied Sciences. 10(14): 4983. https://doi.org/10.3390/app10144983.

L. Xu, X.S. Bai, M. Jia, Y. Qian, X. Qiao, X. Lu. 2018. Experimental and Modelling Study of Liquid Fuel Injection and Combustion in Diesel Engines with a Common Rail Injection System. Applied Energy. 230: 287-304. Doi: doi.org/10.1016/j.apenergy.2018.08.104

F. Bai, Z. Zhang, Y. Du, F. Zhang and Z. Peng. 2017. Effects of Injection Rate Profile on Combustion Process and Emissions in Diesel Engine. Journal of Combustion.

Doi: https://doi.org/10.1155/2017/9702625.

P. L. Herzog, L. Bürgler, E. Winklhofer, P. Zelenka and W. Cartellieri. 1992. NOx Reduction Strategies for DI Diesel Engines. SAE transactions. 820-836.

C. V. Beidl, D. W. Gill, W. Cartellieri and A. Rust. 1998. The Impact of Emissions and Fuel Economy Requirements on Fuel Injection System and Noise of HD Diesel Engines. International Congress & Exposition.

V. H. Nguyen, A. Cavicchi, D. X. Nguyen, K. T. Nguyen, P. X. Pham and L. Postrioti. 2022. Hydraulic Characterization of a Second-generation Common Rail Injector Operating under Solo and Split Injection Strategies. Flow Measurement and Instrumentation. 85: 102170.

Doi: 10.1016/j.flowmeasinst.2022.102170.

A. L. Niculae, R. Chiriac, and A. Racovitza. 2022. Effects of Injection Rate Shape on Performance and Emissions of a Diesel Engine Fuelled by Diesel and Biodiesel B20. Applied Sciences. 12: 1333. Doi: 10.3390/app12031333.

Z. Zhang, H. Liu, Z. Yue, Y. Wu, X Kong, Z. Zheng and M Yao. 2022. Effects of Multiple Injection Strategies on Heavy-duty Diesel Energy Distributions and Emissions under High Peak Combustion Pressures. Frontiers in Energy Research. Doi:10.3389/fenrg.2022.857077.

V. Macian, R. Payri, S. Ruiz, M. Bardi abd A. H. Plazas. 2014. Experimental Study of the Relationship between Injection Rate Shape and Diesel Ignition using a Novel Piezo-Actuated Direct-acting Injector. Applied Energy. 118: 100-113. Doi: 10.1016/j.apenergy.2013.12.025.

D. A. Nehmer and R. D. Reitz. 1994. Measurement of the Effect of Injection Rate and Split Injections on Diesel Engine Soot and NOx Emissions. SAE transactions. 1030-1041.

P. Karra and S. C. Kong. 2009. Diesel Emission Characteristics using High Injection Pressure with Converging Nozzles in a Medium-duty Engine. SAE International Journal of Fuels and Lubricants. 1(1): 578-592.

D. Han, Y. Duan, C. Wang, H. Lin and Z. Huang. 2014. Experimental Study on Injection Characteristics of Fatty Acid Esters on a Diesel Engine Common Rail System. Fuel. 123: 19-25. Doi: 10.1016/j.fuel.2014.01.048.

F. Boudy and P. Seers. 2009. Impact of Physical Properties of Biodiesel on the Injection Process in a Common-rail Direct Injection System. Energy Conversion and Management. 50(12): 2905-2912. Doi: 10.1016/j.enconman.2009.07.005.

X. L. J. Seykens, T. L. Somers and G. R. Baert. 2004. Modelling of Common Rail Fuel Injection System and Influence of Fluid Properties on Injection Process. Proceedings of VAFSEP. 6-9.

S. Yang and C. Lee. 2018. Experimental Research on the Injection Rate of DME and Diesel Fuel in Common Rail Injection System by using Bosch and Zuech Methods. Energies. 11: 273. Doi.org/10.3390/en11020273.

A. L. Boehman, D. Morris, J. Szybist and E. Esen. 2004. The Impact of the Bulk Modulus of Diesel Fuels on Fuel Injection Timing. Energy & Fuels. 18(6): 1877-1882. Doi: 10.1021/ef049880j.

S. Ishikawa, Y. Ohmori, S. Fukushima, T. Suzuki, A. Takamura and T. Kamimoto. 2000. Measurement of Rate of Multiple-injection in CDI Diesel Engines. SAE Technical Paper. Doi: 10.4271/2000-01-1257.

C. Arcoumanis, M. S. Baniasad and M. S. Banias. 1993. Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods. SAE Transactions. 1371-1384.

R. Munsin, Y. Laoonual, S. Jugjai, M. Matsuki and H. Kosaka. 2015. Effect of Glycerol Ethoxylate as an Ignition Improver on Injection and Combustion Characteristics of Hydrous Ethanol under CI Engine Condition. Energy Conversion and Management. 98: 282-289. Doi: 10.1016/j.enconman.2015.03.116.

L. Postrioti, G. Buitoni, F. C. Pesce and C. Ciaravino. 2014. Zeuch Method-based Injection Rate Analysis of a Common-rail System Operated with Advanced Injection Strategies. Fuel. 128: 188-198. Doi: 10.1016/j.fuel.2014.03.006.

R. Payri, A. García, V. Domenech, R. Durrett and A. H. Plazas. 2012. An Experimental Study of Gasoline Effects on Injection Rate, Momentum Flux and Spray Characteristics using a common Rail Diesel Injection System. Fuel. 97: 390-399. Doi: 10.1016/j.fuel.2011.11.065.

B. T. B. Hue, N. K. Lien, D. V. D. Khoa, N. V. Dat, Q. Q. Huy, P. Q. Nhien, N. T. A. Hong, H. H. Tri and L. V. Thuc. 2012. Biodiesel Production from Rubber Seed Oil. Can tho University Journal of Science. 105-113.

PETROLIMEX. 2011. DO oil. 22 12 2011. [Online]. Available: https://kv5.petrolimex.com.vn/nd/linhvuc-kd/nhien_lieu_diezen.html. [Accessed 15 04 2022].

P. W. Bridgman. 1958. The Physics of High Pressure. London: George Bell & Sons. 116-149.

J. B. Heywood. 1988. Internal Combustion Engine Fundamentals. New York: McGraw-Hill. 864.

A. Monyem, J. H. Van Gerpen and M. Canakci. 2001. The Effect of Timing and Oxidation on Emissions from Biodiesel-fueled Engines. Transactions of the ASAE. 44(1): 35. Doi: 10.13031/2013.2301.

P. Srichai, P. P. Ewphun, C. Charoenphonphanich, P. Karin, M. Tongroon and N. Chollacoop. 2018. Injection Characteristics of Palm Methyl Ester Blended with Diesel using Zuech’s Chamber. International Journal of Automotive Technology. 19(3): 535-545.

T. Knefel. 2011. The Evaluation of the Characteristic Injection Times of a Multiple Fuel Dose. Journal of KONES. 18: 205-213.

J. Dernotte, C. Hespel, F. Foucher, S. Houillé and C. Mounaïm-Rousselle. 2012. Influence of Physical Fuel Properties on the Injection Rate in a Diesel injector. Fuel. 96: 153-160. Doi: 1016/j.fuel.2011.11.073.

M. Wei, S. Li, J. Liu, G. Guo, Z. Sun and H. Xiao. 2017. Effects of Injection Timing on Combustion and Emissions in a Diesel Engine Fueled with 2, 5-dimethylfuran-diesel Blends. Fuel. 192: 208-217. Doi: 10.1016/j.fuel.2016.11.084.

K. Santhosh and G. N. Kumar. 2021. Effect of Injection Time on Combustion, Performance and Emission Characteristics of Direct Injection CI Engine Fuelled with Equi-volume of 1-hexanol/diesel Blends. Energy. 214: 118984. Doi: 10.1016/j.energy.2020.118984.

E. Plamondon and P. Seers. 2014. Development of a Simplified Dynamic Model for a Piezoelectric Injector using Multiple Injection Strategies with Biodiesel/diesel-fuel blends. Applied Energy. 131: 411-424. Doi: 10.1016/j.apenergy.2014.06.039.

P. Tinprabath, C. Hespel, S. Chanchaona and F. Foucher. 2013. Influence of Biodiesel and Diesel Fuel Blends on the Injection Rate and Spray Injection in Non-vaporizing Conditions. SAE Technical Paper.

P. Tinprabath, C. Hespel, S. Chanchaona and F. Foucher. 2015. Influence of Biodiesel and Diesel Fuel Blends on the Injection Rate under Cold Conditions. Fuel. 144: 80-89. Doi: 10.1016/j.fuel.2014.12.010.




How to Cite

Chau, V. T., Long, T. D., Vang, H. B., Hoang, N. M., Phuc, N. H., & Sy, N. Q. . (2023). A STUDY ON THE INJECTION RATE CHARACTERISTICS OF THE SOLENOID COMMON-RAIL INJECTOR UNDER USING A HIGH-PRESSURE FUEL SYSTEM. Jurnal Teknologi, 85(3), 25–33. https://doi.org/10.11113/jurnalteknologi.v85.19106



Science and Engineering