ULASAN SENARIO PELEPASAN NANOZARAH SINTETIK KE EKOSISTEM AIR

A REVIEW ON RELEASE SCENARIOS OF ENGINEERED NANOPARTICLES INTO THE AQUATIC ECOSYSTEM

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.19207

Keywords:

Nanoparticles, release, aggregate, transformation, IR-4.0

Abstract

The development and empowerment of nanotechnology have always attracted scientists and industry players because this sector has the potential to become a new economic bottom line. Various products involving nano-sized materials have been utilized to create items that can provide benefits to humans. This usage will inevitably lead to an increasing number of nanoparticles being released into the environment. The scenario of releasing various nanoparticles from consumer products into natural water and the environment raises great concern nowadays. Thus, this brief review aims to provide information on the types of nanoparticles, release scenarios, pathways of nanoparticles into the environment, and their reactions when released into the water environment.

References

Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & Von Der Kammer, F. 2014. Spot the Difference: Engineered and Natural Nanoparticles in the Environment-Release, Behavior, and Fate. Angewandte Chemie - International Edition. 53(46): 12398-12419.

Doi: https://doi.org/10.1002/anie.201405050.

Reijnders, L. 2006. Cleaner Nanotechnology and Hazard Reduction of Manufactured Nanoparticles. J. Clean Prod. 14(2): 124-133.

Doi: https://doi.org/10.1016/j.jclepro.2005.03.018.

Sharma, V. K., Sayes, C. M., Guo, B., Pillai, S., Parsons, J. G., Wang, C. & Yan, B. 2019. Interactions between Silver Nanoparticles and Other Metal Nanoparticles under Environmentally Relevant Conditions: A Review. Science of the Total Environment. 653: 1042-105.

Doi: https://doi.org/10.1016/j.scitotenv.2018.10.411.

Khan, S. H. 2020. Green Nanotechnology for the Environment and Sustainable Development. In Green Materials for Wasterwater Treatment. 13-46. Springer.

Doi: https://doi.org/10.1007/978-3-030-17724-9_2.

Keller, A. A., McFerran, S., Lazareva, A. & Suh, S. 2013. Global Life Cycle Releases of Engineered Nanomaterials. Journal of Nanoparticle Research. 15(6): 1-17.

DOI: https://doi.org/10.1007/s11051-013-1692-4

Hotze, E. M., Phenrat, T., Lowry, G. V. & Mellon, C. 2010. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 39: 1909-1924.

Doi: https://doi.org/10.2134/jeq2009.0462.

Lowry, G. V., Hotze, E. M., Bernhardt, E. S., Dionysiou, D. D., Pedersen, J. A., M. R. & Xing, B. 2010. Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series. Journal of Environment Quality. 39(6): 1867.

Doi: https://doi.org/10.2134/jeq2010.0297.

Tolaymat, T., Badawy, A. E., Genaidy, A., Abdelraheem, W., Sequeira, R. 2017. Analysis of Metallic and Metal Oxide Nanomaterial Environmental Emissions. Journal of Cleaner Production. 143: 401-412.

Doi: https://doi.org/10.1016/j.jclepro.2016.12.094.

Bhatt, I. & Tripathi, B. N. 2011. Interaction of Engineered Nanoparticles with Various Components of the Environment and Possible Strategies for Their Risk Assessment. Chemosphere. 82(3): 308-317.

Doi: https://doi.org/10.1016/j.chemosphere.2010.10.011.

Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E. & Shon, H. K. 2013a. Assessing the Aggregation Behaviour of Iron Oxide Nanoparticles under Relevant Environmental Conditions using a Multi-method Approach. Water Research. 47: 4585-4599.

Doi: https://doi.org/10.1016/j.watres.2013.04.029.

Wei-xian Zhang. 2003. Nanoscale Iron Particles for Environmental Remediation - An Overview. Journal of Nanoparticle Research. 5: 323-332.

Doi: https://doi.org/10.1023/A:1025520116015.

Ghosh, S., Mashayekhi, H., Bhowmik, P. & Xing, B. 2010. Colloidal Stability of Al2O3 Nanoparticles as Affected by Coating of Structurally Different Humic Acids. Langmuir. 26(2): 873-879.

Doi: https://doi.org/10.1021/la902327q.

Barisik, M., Atalay, S., Beskok, A. & Qian, S. 2014. Size Dependent Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry. 118(4): 1836-1842.

Doi: https://doi.org/10.1021/jp410536n.

Gottschalk, Fadri, Tianyin Sun, and Bernd Nowack. 2013. Environmental Concentrations of Engineered Nanomaterials: Review of Modeling and Analytical Studies. Environmental Pollution. 181: 287-300.

Doi: https://doi.org/10.1016/j.envpol.2013.06.003.

Boverhof, D. R., Christina, M. B., John, H. B., Clancy, S. F., Mark, L., Jay, W., Steve, C. G. 2015. Comparative Assessment of Nanomaterials Definitions and Safety Evaluation. Regultory Toxicology and Pharmacology. 73(1): 135-150.

Doi: https://10.1016/j.yrtph.2015.06.001.

Hochella, M. F., Mogk, D. W., Ranville, J., Allen, I. C., Luther, G. W., Marr, L. C., McGrail, B. P. 2019. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science. 363(6434): 1-10.

Doi: https://10.1126/science.aau8299.

Hartland, A. Jamie, R.L., Vera, I. S. & Denis, O. 2013. The Environmental Significance of Natural Nanoparticles. Nature Education Knowledge. 4(8): 1-14.

Yang, K. Lin, D. & Xing, B. 2009. Interactions of Humic Acid with Nanosized Inorganic Oxides. Langmuir. 25: 3571-3576.

Doi: https://10.1016/j.envpol.2008.11.007.

Neumann, T. 2012. Fundamental of Aquatic Chemistry Relevant Radionuclide Behaviour in the Environment. In Radionuclide Behaviour in the Natural Environment Science, Implications and Lessons for the Nuclear Industry, 13-43. Woodhead Publishing.

Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y. & Mahendra, S. 2008. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environmental Toxicology and Chemistry / SETAC. 27(9): 1825-1851.

Doi: https://10.1897/08-090.1.

Philippe, A. & Schaumann, G. E. 2014. Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids: A Review. Environmental Science & Technology. 48(16): 8946-896.

Doi: https://10.1021/es502342r.

Aiken, G.R., Heileen, H., & Joseph, N.R. 2011. Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environmental Science & Technology. 45: 3196-3201.

Doi: https://10.1021/es103992s.

Gabriele, E. S., Daniela, G., Yamuna, K. M., Sandra, S., Dorte, D., Yamuna, K. M., Sandia, S. & Dorte, D. 2013. Interaction between Cations and Water Molecule Bridges in Soil Organic Matter. Journal of Soils and Sediments. 13(9): 1579-1588.

Doi: https://doi.org/10.1007/s11368-013-0746-7.

Buffle, J., Wilkinson, K. J., Stoll, S., Filella, M., Zhang, J. 1998. A Generalized Description of Aquatic Colloidal Interactions: The Three-colloidal Component Approach. Environ. Sci. Technol. 32: 2887-2899.

Doi: https://10.1021/es980217h.

Connell, D. W. 2005. Basic Concept of Environmental Chemistry. Edisi ke-2. CRC Press.

Nebbioso, A. & Piccolo, A. 2013. A Molecular Characterization of Dissolved Organic Matter (DOM): A Critical Review. Analytical and Bioanalytical Chemistry. 405: 109-124.

Doi: https://doi.org/10.1007/s00216-012-6363-2.

Jiang, X., Tong, M. & Kim, H. 2012. Influence of Natural Organic Matter on the Transport and Deposition of Zinc Oxide Nanoparticles in Saturated Porous Media. Journal of Colloid and Interface Science. 386(1): 34–43.

Doi: https://10.1016/j.jcis.2012.07.002.

Ju-Nam, Y. & Jamie R Lead. 2008. Manufactured Nanoparticles: An Overview of Their Chemistry, Interactions and Potential Environmental Implications. Science of the Total Environment. 400: 396-414.

Doi: https://10.1016/j.scitotenv.2008.06.042.

Labille, J. & Brant, J. 2010. Stability of Nanoparticles in Water. Nanomedicine. 5(6): 985-998.

Doi: https://10.2217/nnm.10.62.

Wilson, Niki. 2018. Nanoparticles: Environmental Problems or Problem Solvers? Bioscience. 68(4): 241-246.

Doi: https://10.1093/biosci/biy015.

Slomberg, D. L., Ollivier, P., Miche, H., Angeletti, B., Bruchet, A., Philibert, M., Brant, J & Labille, J. 2019. Nanoparticle Stability in Lake Water Shaped by Natural Organic Matter Properties and Presence of Particulate Matter. Science of the Total Environment. 656: 338-346.

Doi: https://doi.org/10.1016/j.scitotenv.2018.11.279.

Giese, B., Klaessig, F., Park, B., Kaegi, R., Steinfeldt, M., Wigger, H., Von Gleich, A., et al. 2018. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Scientific Reports. 8(1): 1-18.

Doi: https://10.1038/s41598-018-19275-4.

Yu, S. Y., Yin, Y. G., Liu, J. F. 2013. Silver Nanoparticles in the Environment. Environ Sci: Processes Impact. 15: 78-92.

Doi: https://doi.org/10.1039/C2EM30595J.

Jeelani, P. G., Mulay, P., Venkat, R. 2020. Multifaceted Application of Silica Nanoparticles: A Review. Silicon. 12: 1337-1354.

Doi: https://doi.org/10.1007/s12633-019-00229-y.

Nadeem, M., Khan, R., Afridi, K. 2020. Green Synthesis of Cerium Oxide Nanoparticles and Their Antimicrobial Applications: A Review. Int J Nanomedicine. 15: 5951-5961.

Doi: https://10.2147/IJN.S255784.

Singh, K. R. B., Nayak, V., Sarkar, T., Singh, R. P. 2020. Cerium Oxide Nanoparticles: Properties, Biosynthesis and Biomedical Application. RSC Adv. 10: 27194-27214.

Doi: https://doi.org/10.1039/D0RA04736H.

Dadfar, M., Roemhild, K., Drude, N. I, Stillfried. S. V., Knuchel, R., Kiessling, F., Lammers, T. 2019. Iron Oxide Nanoparticles: Diagnostics, Therapeutics and Theranostic Applications. Advanced Drug Delivery Reviews. 138: 302-325.

Doi: 10.1016/j.addr.2019.01.005.

Sangaiya, P & Jayapraksh, R. 2018. A Review on Iron Oxide Nanoparticles and Their Biomedical Applications. Journal of Superconductivity and Novel Magnetism. 31: 3397-3413.

Doi: https://doi.org/10.1007/s10948-018-4841-2.

Future Market. 2016. The Global Market for Aluminium Oxide Nanoparticles.

https://www.futuremarketsinc.com/the-global-market-for-aluminium-oxide-nanoparticles-2/#prettyPhoto [24 March 2020].

Rahmati, M & Mozafari, M. 2019. Biocompatibility of Alumina-based Biomaterials–A Review. J Cell Physiol. 234: 3321-3335.

Doi: https://10.1002/jcp.27292.

Siddiqiu, S. H & Isaac, H. P. 2022. Alumina-based Adsorbents. In Nanomaterials for Environmental Applications. 161-177. CRC Press.

Sanjiv Singh. 2019. Zinc Oxide Nanoparticles Impacts: Cytotoxicity, Genotoxicity, Developmental Toxicity, and Neurotoxicity. Toxicology Mechanisms and Methods. 29(4): 300-311.

Doi: https://doi.org/10.1080/15376516.2018.1553221.

Moradpoora, H., Safaej, M., Mozaffaric, H. R., Sharifid, R., Imanie, M. M., Golshahe, A., Bashardoustf, N. 2021. An Overview of Recent Progress in Dental Applications of Zinc Oxide Nanoparticles. RSC Adv. 11: 21189-21206.

Doi: https://doi.org/10.1039/D0RA10789A.

Keerthana, S. & Kumar, A. 2020. Potential Risks and Benefits of Zinc Oxide Nanoparticles: A Systematic Review. Critical Reviews in Toxicology. 50(1): 47-71.

Doi: 10.1080/10408444.2020.1726282.

Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K. & Lead, J. R. 2008. Aggregation and Surface Properties of Iron Oxide Nanoparticles: Influence of pH and Natural Organic Matter. Environmental Toxicology and Chemistry. 27(9): 1875-82.

Doi: https://10.1897/07-559.1.

Donia, D. T. & Carbone, M. 2019. Fate of the Nanoparticles in Environmental Cycles. International Journal of Environmental Science and Technology. 16(1): 583-600.

Doi: https://10.1897/07-559.1.

Gottschalk, F. & Nowack, B. 2011. The Release of Engineered Nanomaterials to the Environment. Journal of Environmental Monitoring: JEM. 13(5): 1145-55.

Doi: https://10.1039/c0em00547a.

Grand View Research. 2019. Magnetite Nanoparticles Market Size, Share & Trends Analysis Report by Application (Bio-medical, Electronics, Energy, Wastewater Treatment), By Region, and Segment Forecasts, 2019–2025.

Ray, P. C. & Fu, P. P. 2010. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ Sci. Health C. Environ Carcinog Ecotoxical Rev. 27(1): 1-35.

Doi: https://10.1080/10590500802708267.Toxicity.

Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., Schulz, R., et al. 2018. Nanoparticles in the Environment: Where Do We Come From, Where Do We Go To? Environmental Sciences Europe. 30(6): 1-17.

Doi: https://10.1186/s12302-018-0132-6.

Chowdhury, I., Hong, Y., Honda, R. J. & Walker, S. L. 2011. Mechanisms of TiO2 Nanoparticle Transport in Porous Media: Role of Solution Chemistry, Nanoparticle Concentration, and Flowrate. Journal of Colloid and Interface Science. 360(2): 548-555.

Doi: https://10.1016/j.jcis.2011.04.111.

Petosa, A. R., Brennan, S. J., Rajput, F. & Tufenkji, N. 2012. Transport of Two Metal Oxide Nanoparticles in Saturated Granular Porous Media: Role of Water Chemistry and Particle Coating. Water Research. 46(4): 1273-1285.

Doi: https://10.1016/j.watres.2011.12.033.

Chen, Kai Loon. 2008. Aggregation and Deposition of Nanoparticles in Aquatic Environments. Tesis Dr. Fal, Yale University.

Omar, F. M., Aziz, H. A., Stoll, S. 2014. Nanoparticle Properties, Behaviour, Fate in Aquatic Systems and Characterization. Journal of Colloid Science and Biotechnology. 3: 1-30.

Doi: https://10.1166/jcsb.2014.1090.

Zhang, J. & Guo, W. 2019. The Effects and the Potential Mechanism of Environmental Transformation of Metal Nanoparticles on Their Toxicity in Organisms. Environ. Sci. Nano. 5: 2482-2499.

Doi: https://10.1039/C8EN00688A.

Hartmann, N. I. B., Skjolding, L. M., Hansen, S. F., Baun, A., Kjølholt, J. & Gottschalk, F. 2014. General Rights Environmental Fate and Behaviour of Nanomaterials New Knowledge on Important Transfomation Processes. Laporan Persekitaran No. 1594. Danish Environmental Protection Agency.

NanoMalaysia Berhad. 2020. Teknologi nano PKS dijangka sumbang RM22 bilion pendapatan kasar negara. https://dagangnews.com/eksklusif-teknologi-nano-pks-dijangka-sumbang-rm22-bilion-pendapatan-kasar-negara [18 sept 2020].

Malakar, M., Kanel, S.R., Ray, C., Snow, D.D., Nadagouda, M.N. 2021. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Science of The Total Environment 759:143470

DOI: https://doi.org/10.1016/j.scitotenv.2020.143470

Melissa, A.M.J., Ian, L.G., Catherine, J.M. & Christy, L.H. 2013. Toxicity of engineered nanoparticles in the environment. Analytical Chemistry 85(6):3036-304.

DOI: https://10.1021/ac303636s.Toxicity

Matrin, C. Nourian, A., Babaie, M., Nasr, G.G. 2023. Environmental, health, and safety assessment of nanoparticles application in drilling mud – review. Geoenergy Science and Engineering. 226: 211767

DOI: https://doi.org/10.1016/j.geoen.2023.211767

Kumah, E.A., Fopa, R.D., Harati, S., Boadu, P., Zohoori, F.V., Pak, T. 2023. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 23:1059

DOI: https://doi.org/10.1186/s12889-023-15958-4

Downloads

Published

2024-03-27

Issue

Section

Science and Engineering

How to Cite

ULASAN SENARIO PELEPASAN NANOZARAH SINTETIK KE EKOSISTEM AIR: A REVIEW ON RELEASE SCENARIOS OF ENGINEERED NANOPARTICLES INTO THE AQUATIC ECOSYSTEM. (2024). Jurnal Teknologi, 86(3), 155-164. https://doi.org/10.11113/jurnalteknologi.v86.19207