SEISMIC WAVE TIME OF ARRIVAL AND PATH VELOCITY ESTIMATION USING 1-HZ GPS DATA

Authors

  • Mohd Azizi Alim Shah Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0009-0008-9813-132X
  • Wan Anom Wan Aris Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Zuri Sha’ameri School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tajul Ariffin Musa Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shahidatul Sadiah Abdul Manan School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19240

Keywords:

Earthquake, High-rate GPS, Seismic wave, TOA, Path velocity

Abstract

This paper proposed the method of determining seismic wave TOA and path velocity from Global Positioning System (GPS) data. High-rate GPS data from 13 Continuous Operational Reference Station (CORS) were utilized to obtain displacement and seismic waveform during the occurrence of Sumatra-Andaman 9.2Mw earthquake 2004. To detect seismic body waves using GPS data is difficult because of attenuated signal, therefore seismic surface waves have been used. The seismic wave TOA of between 116 s to 194 s was determined using time-frequency representation (TFR). The estimated seismic wave path velocities were found within the range of 3.8 km/s to 4.6 km/s, indicated as secondary wave or surface wave. To validate the estimated path velocity, it was compared with other research with an average value of 6 km/s to 13 km/s for body wave and 2 km/s to 5 km/s for surface wave. These results indicate that GPS CORS can be an alternative sensor for detecting earthquakes other than seismometers.

References

Amirrudin, Muhammad & Md Din, Ami Hassan & Zulkifli, Nur Adilla & Che Amat, Asyran & Hamden, Mohammad. 2020. Assessment of the Accuracy and Precision of Myrtknet Real-time Services. Jurnal Teknologi. 83: 93-103. Doi: 10.11113/jurnalteknologi.v83.13892.

B. Boashash. 2015. Time-frequency Signal Analysis and Processing. 2nd Edition. A Comprehensive Reference, Elsevier, Amsterdam.

Blewitt, G., Hammond, W. C., Kreemer, C., Plag, H.-P., Stein, S., & Okal, E. 2009. GPS for Real-time Earthquake Source Determination and Tsunami Warning Systems. Journal of Geodesy. 83(3-4): 335-343. Doi: 10.1007/s00190-008-0262-5.

Braile, L. 2004. Exploration in Earth Science. Web.ics.purdue.edu. https://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm.

Chen, K., Ge, M., Babeyko, A., Li, X., Diao, F., & Tu, R. 2016. Retrieving Real-time Co-seismic Displacements using GPS/GLONASS: A Preliminary Report from the September 2015Mw8.3 Illapel Earthquake in Chile. Geophysical Journal International. 206(2): 941-953. Doi: 10.1093/gji/ggw190.

Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., … Galetzka, J. 2007. Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman Earthquake of 2004. Bulletin of the Seismological Society of America. 97(1A): S152-S173. Doi: 10.1785/0120050631.

Cormier, V. F. 1989. Seismic Attenuation: Observation and Measurement. Geophysics. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30752-4_122.

Cormier, V. F. 2015. Treatise on Geophysics. Theory and Observations: Forward Modeling: Synthetic Body Wave Seismograms. 201-230. Doi: 10.1016/B978-0-444-53802-4.00005-1.

EarthScope Consortium. 2021. SAGE: Data Services. Seismological Facility for the Advancement of Geoscience. Retrieved August 24, 2021, from http://ds.iris.edu/ds.

Dixon, Timothy & Mao, Ailin & Bursik, Marcus & Heflin, M. & Langbein, John & Stein, Ross & Webb, Frank. 1997. Continuous Monitoring of Surface Deformation at Long Valley Caldera, California, with GPS. Journal of Geophysical Research. 1021: 12017-12034. 10.1029/96JB03902.

Endra Gunawan, Putra Maulida, Irwan Meilano, Masyhur Irsyam, Joni Efendi. 2016. Analysis of Coseismic Fault Slip Models of the 2012 Indian Ocean Earthquake: Importance of GPS Data for Crustal Deformation Studies. Acta Geophys. 64(6): 2136-2150.

Fang, R., Shi, C., Song, W., Wang, G., & Liu, J. 2013. Determination of Earthquake Magnitude using GPS Displacement Waveforms from Real-time Precise Point Positioning. Geophysical Journal International. 196(1): 461-472. Doi: 10.1093/gji/ggt378.

Geng, T., Xie, X., Fang, R., Su, X., et al. 2016. Real-time Capture of Seismic Waves using High-rate Multi-GNSS Observations: Application to the 2015 Mw7.8 Nepal Earthquake. Geophys. Res. Lett. 43: 161-167.

Scripps Institution of Oceanography. 1986. Global Seismograph Network - IRIS/IDA [Data set]. International Federation of Digital Seismograph Networks. Retrieved August 24, 2021, from https://doi.org/10.7914/SN/II.

Hays, w. w. 1994. Facing Geologic and Hydrologic Hazards: Earth-science Considerations. Professional Paper. https://pubs.er.usgs.gov/publication/pp1240B.

Doi: 10.3133/pp1240B.

Incorporated Research Institutions for Seismology (IRIS). 2021. How are Earthquakes Located? Seismological Facility for the Advancement of Geoscience. Retrieved August 24, 2021, from https://www.iris.edu/hq/inclass/fact-sheet/how_are_earthquakes_located.

J. G. Proakis, D. K. Manolakis. 2013. Digital Signal Processing. 4th Edition. Pearson.

Jin, S., & Su, K. 2019. Co-seismic Displacement and Waveforms of the 2018 Alaska Earthquake from High-rate GPS PPP Velocity Estimation. Journal of Geodesy.

Doi: 10.1007/s00190-019-01269-3.

Kiyoung Kim, Jaemook Choi, Junyeon Chung, Gunhee Koo, In-Hwan Bae, Hoon Sohn. 2018. Structural Displacement Estimation through Multi-rate Fusion of Accelerometer and RTK-GPS Displacement and Velocity Measurements. Measurement. 130: 223-235.

Larson, K. M., Bilich, A., & Axelrad, P. 2007. Improving the precision of high-rate GPS. Journal of Geophysical Research. 112(B5). Doi: 10.1029/2006jb004367.

Li, Xingxing. 2015. Real-time High-rate GNSS Techniques for Earthquake Monitoring and Early Warning. 10.14279/depositonce-4585.

Monika Wilde-Piórko; Seweryn J. Duda; Marek Grad. 2011. Frequency Analysis of the 2004 Sumatra-Andaman Earthquake using Spectral Seismograms. 59(3): 483-501. Doi: 10.2478/s11600-011-0010-8.

Nyberg, S., Kallio, U., Koivula, H. 2013. GPS Monitoring of Bedrock Stability at Olkiluoto Nuclear Waste Disposal Site in Finland from 1996 to 2012. Journal of Geodetic Science. 3(2). Doi: 10.2478/jogs-2013-0017.

SAGE. 2021. Query to view seismic stations on the map. Seismological Facility for the Advancement of Geoscience. Retrieved August 24, 2021, from https://ds.iris.edu/gmap/.

Rajasekaran, S. 2009. Structural Dynamics of Earthquake Engineering. Earthquake and Earthquake Ground Motion. 571-604. Doi: 10.1533/9781845695736.2.571.

Schmitt, D. R. 2015. Treatise on Geophysics. Geophysical Properties of the Near Surface Earth: Seismic Properties. 43-87. Doi:10.1016/B978-0-444-53802-4.00190-1.

Sha’ameri, Ahmad Zuri and Wan Aris, Wan Anom and Sadiah, Shahidatul and Musa, Tajul Ariffin. 2021a. GPS Derived Seismic Signals for Far Field Earthquake Epicenter Location Estimation. Journal of Engineering Technology and Applied Physics. 3(1): 7-12.

Sha'ameri, A., Wan Aris, W., Sadiah, S. and Musa, T. 2021b. Reliability of Seismic Signal Analysis for Earthquake Epicenter Location Estimation Using 1 Hz GPS Kinematic Solution. Measurement. 182: 109669.

Shi, C., Lou, Y., Zhang, H., Zhao, Q., Geng, J., Wang, R., … Liu, J. 2010. Seismic Deformation of the Mw 8.0 Wenchuan Earthquake from High-rate GPS Observations. Advances in Space Research. 46(2): 228-235.

Doi: 10.1016/j.asr.2010.03.006.

Shuanggen Jin, Ke Su. 2019. Alaska Earthquake from High-rate GPS PPP Velocity Estimation. J. Geod. 93(9): 1559-1569.

Spiller, F. C. P. 1998. Radiolarian Biostratigraphy of Peninsular Malaysia and Implications for Regional Palaeotectonics and Palaeogeography. PhD Thesis Doctoral. University of New England. https://hdl.handle.net/1959.11/10916.

Pacific Coastal and Marine Science Center. 2018. Tsunami Generation from the 2004 M=9.1 Sumatra-Andaman Earthquake | U.S. Geological Survey. Retrieved August 24, 2021, from https://www.usgs.gov/centers/pcmsc/science/tsunami-generation-2004-m91-sumatra-andaman-earthquake.

Wang, J., Xiao, Z., Liu, C., Zhao, D., & Yao, Z. 2019. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth.

Doi: 10.1029/2019jb017536.

W. A. W. Aris. 2018. Spatio-Temporal Crustal Deformation Model of Sundaland in Malaysia Using Global Positioning System. PhD. Thesis. Faculty of Build Environment and Survey, Universiti Teknologi Malaysia.

Xiang, Y., Yue, J., Tang, K., & Li, Z. 2018. A Comprehensive Study of the 2016 Mw 6.0 Italy Earthquake based on High-rate (10 Hz) GPS Data. Advances in Space Research. 63(1): 103-117. Doi: 10.1016/j.asr.2018.08.027.

Xiang, Yunfei, Yue, Jianping, Cai, Dongjian, Wang, Hao. 2019. Rapid Determination of Source Parameters for the 2017 Mw 8.2 Mexico Earthquake based on High-rate GPS Data. Advances in Space Research. 64(5): 1148-1159.

Doi: 10.1016/j.asr.2019.06.001.

Xiao, Dongsheng, Chang, Ming, Su, Yong, Hu, Qijun, Yu, Bing. 2016. Quasi-real Time Inversion Method of Three-dimensional Epicenter Coordinate, Trigger Time, and Magnitude based on CORS. Earthquake Engineering and Engineering Vibration. 15(3): 425-433.

Doi: 10.1007/s11803-016-0333-.

Yong, C. Z. 2019. Tectonic Geodesy: An Analysis of the Crustal Deformation of the Western Sundaland Plate from Nearly Two Decades of continuous GPS Measurements. Thesis, Doctor of Philosophy. University of Otago. Retrieved December 3, 2019, from http://hdl.handle.net/10523/9484.

Downloads

Published

2023-09-17

Issue

Section

Science and Engineering

How to Cite

SEISMIC WAVE TIME OF ARRIVAL AND PATH VELOCITY ESTIMATION USING 1-HZ GPS DATA. (2023). Jurnal Teknologi (Sciences & Engineering), 85(6), 111-119. https://doi.org/10.11113/jurnalteknologi.v85.19240