RECENT MODIFICATIONS OF CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS

Authors

  • Mohd Hayrie Mohd Hatta Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-9910-7822
  • Juan Matmin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0001-9796-6407
  • Nur Fatiha Ghazalli School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150 Kota Bahru, Kelantan, Malaysia https://orcid.org/0000-0002-2295-6762
  • Mohamad Azani Abd Khadir Jalani Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Kompleks Permata Insan, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Faisal Hussin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0001-8185-3440

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19253

Keywords:

Antibacterial, biosensors, CNTs, dentistry, drug delivery, functionalization

Abstract

Recent advances in the field of biomedical have been remarkably achieved in the last few years, especially in the fabrication of nanomaterials that have various applications. Carbon nanotubes (CNTs) are carbon-based materials with cylindrical shapes that have an average diameter of less than 2 nanometre (nm) for single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) with average diameters up to 100 nm. CNTs demonstrate various outstanding and excellent mechanical, electrical, conductivity, thermal properties, high surface area, and high biocompatibility. These remarkable properties have led to the development of CNTs-based materials in the biomedical field. For the past decades, the functionalization of CNTs has been actively researched in order to increase their biocompatibility for application in antibacterial materials, dentistry, drug delivery, and biosensing. The surface functionalization enhances the capabilities, features, and properties by modifying the surface chemistry of CNTs to improve their biocompatibility. The functionalization of CNTs will enable the biomolecule loading on the surface of CNTs, and thus can be used for drug delivery for targeted cells or immobilization support. In this review, we discuss the related literatures on biomedical applications of CNTs such as antibacterial, dental materials, cancer therapy and biosensors from 2007 – 2022. We also review the antibacterial properties between SWCNTs and MWCNTs, functionalized CNTs-reinforced nanocomposite for dental applications, and the ability of CNTs to work as nanocarriers to deliver drugs directly to cancer cells. Moreover, the applications of CNTs-based biosensors in detecting biological and biomedical compounds are also discussed. 

References

Raphey, V. R., Henna, T. K., Nivitha, K. P., Mufeedha, P., Sabu, C., and Pramod, K. J. M. S. 2019. Advanced Biomedical Applications of Carbon Nanotube. Materials Science and Engineering: C. 100: 616-630. https://doi.org/10.1016/j.msec.2019.03.043.

Anzar, N., Hasan, R., Tyagi, M., Yadav, N., and Narang, J. 2020. Carbon Nanotube-A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors International. 1: 100003. https://doi.org/10.1016/j.sintl.2020.100003.

Damodharan, J. 2021. Nanomaterials in Medicine–An Overview. Materials Today: Proceedings. 37: 383-385. https://doi.org/10.1016/j.matpr.2020.05.380.

Mabrouk, M., Das, D. B., Salem, Z. A., and Beherei, H. H. 2021. Nanomaterials for Biomedical Applications: Production, Characterisations, Recent Trends and Difficulties. Molecules. 26(4): 1077.

https://doi.org/10.3390/molecules26041077.

Rathinavel, S., Priyadharshini, K., and Panda, D. 2021. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Materials Science and Engineering: B. 268: 115095. https://doi.org/10.1016/j.mseb.2021.115095.

Baranwal, A., Srivastava, A., Kumar, P., Bajpai, V. K., Maurya, P. K., and Chandra, P. 2018. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents. Frontiers in Microbiology. 9: 422. https://doi.org/10.3389/fmicb.2018.00422.

Alavi, M., Jabari, E., and Jabbari, E. 2021. Functionalized Carbon-based Nanomaterials and Quantum dots with Antibacterial Activity: A Review. Expert Review of Anti-infective Therapy. 19(1): 35-44. https://doi.org/10.1080/14787210.2020.1810569.

Kang, S., Herzberg, M., Rodrigues, D. F., and Elimelech, M. 2008. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir. 24(13): 6409-6413.

https://doi.org/10.1021/la800951v.

Rajendran, M., Zaki, R. A., and Aghamohammadi, N. 2020. Contributing Risk Factors Towards the Prevalence of Multidrug-Resistant Tuberculosis in Malaysia: A Systematic Review. Tuberculosis. 122: 101925. https://doi.org/10.1016/j.tube.2020.101925.

Malaysian Action Plan on Antimicrobial Resistance (https://myohar.moh.gov.my/malaysian-action-plan-on-antimicrobial-resistance-myap-amr-2017-2021-performance-report-development-of-myap-amr-2022-2026-workshop/).

Debnath, S. K., and Srivastava, R. 2021. Drug Delivery with Carbon-based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology. 3: 644564.

https://doi.org/10.3389/fnano.2021.644564.

Jha, R., Singh, A., Sharma, P. K., and Fuloria, N. K. 2020. Smart Carbon Nanotubes for Drug Delivery System: A comprehensive Study. Journal of Drug Delivery Science and Technology. 58: 101811. https://doi.org/10.1016/j.jddst.2020.101811.

Kaur, J., Gill, G. S., and Jeet, K. 2019. Applications of Carbon Nanotubes in drug Delivery: A Comprehensive Review. Characterization and Biology of Nanomaterials for Drug Delivery. 113-135.

https://doi.org/10.1016/B978-0-12-814031-4.00005-2.

Pathak, C., Vaidya, F. U., and Pandey, S. M. 2019. Mechanism for Development of Nanobased Drug Delivery System. Applications of Targeted Nano Drugs and Delivery Systems. 35-67.

https://doi.org/10.1016/B978-0-12-814029-1.00003-X.

Zhou, Y., Fang, Y., and Ramasamy, R. P. 2019. Non-covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development. Sensors. 19(2): 392. https://doi.org/10.3390/s19020392.

Aslam, M. M. A., Kuo, H. W., Den, W., Usman, M., Sultan, M., and Ashraf, H. 2021. Functionalized Carbon Nanotubes (CNTs) for Water and Wastewater Treatment: Preparation to Application. Sustainability. 13(10): 5717.

https://doi.org/10.3390/su13105717.

Rouhani, M., and Soleymanpour, A. 2020. Molecularly Imprinted Sol-gel Electrochemical Sensor for Sildenafil based on a Pencil Graphite Electrode Modified by Preyssler Heteropolyacid/gold Nanoparticles/MWCNT Nanocomposite. Microchimica Acta. 187(9): 1-16. https://doi.org/10.1007/s00604-020-04482-6.

Jiang, G., Wang, L., Chen, C., Dong, X., Chen, T., and Yu, H. 2005. Study on Attachment of Highly Branched Molecules onto Multiwalled Carbon Nanotubes. Materials Letters. 59(16): 2085-2089.

https://doi.org/10.1016/j.matlet.2005.01.085.

Huang, Y., Lint, I., Chen, C., Hsu, Y., Chang, C., Lee, M. 2013. Delivery of Small Interfering RNAs in Human Cervical Cancer Cells by Polyethylenimine-functionalized Carbon Nanotubes. Nanoscale Res Lett. 8: 267.

https://doi.org/10.1186/1556-276X-8-267.

Cheng, H. K. F., Basu, T., Sahoo, N. G., Li, L., & Chan, S. H. 2012. Current Advances in the Carbon Nanotube/thermotropic Main-chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers. 4(2): 889-912.

https://doi.org/10.3390/polym4020889.

Syrgiannis, Z., Melchionna, M., and Prato, M. 2015. Covalent Carbon Nanotube Functionalization. https://doi.org/10.1007/978-3-642-29648-2_363.

Meng, L., Fu, C., and Lu, Q. 2009. Advanced Technology for Functionalization of Carbon Nanotubes. Progress in Natural Science. 19(7): 801-810. https://doi.org/10.1016/j.pnsc.2008.08.011.

Dubey, R., Dutta, D., Sarkar, A., and Chattopadhyay, P. 2021. Functionalized Carbon Nanotubes: Synthesis, Properties and Applications in Water Purification, Drug Delivery, and Material and Biomedical Sciences. Nanoscale Advances. 3(20): 5722-5744.

https://doi.org/10.1039/D1NA00293G.

Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. 2011. Silver Nanoparticles within Vertically Aligned Multi-wall Carbon Nanotubes with Open Tips for Antibacterial Purposes. Journal of Material Chemisty. 21: 387-393.

https://doi.org/10.1039/C0JM02395G.

Laganà, P., Visalli, G., Facciolà, A., Ciarello, M. P., Laganà, A., Iannazzo, D., and Di Pietro, A. 2021. Is the Antibacterial Activity of Multi-walled Carbon Nanotubes (MWCNTs) Related to Antibiotic Resistance? An Assessment in Clinical Isolates. International Journal of Environmental Research and Public Health. 18(17): 9310.

https://doi.org/10.3390/ijerph18179310.

Sheikhpour, M., Naghinejad, M., Kasaeian, A., Lohrasbi, A., Shahraeini, S. S., and Zomorodbakhsh, S. 2020. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. International Journal of Nanomedicine. 15: 7063. https://doi.org/10.2147/IJN.S263238.

Sireesha, M., Jagadeesh Babu, V., Kranthi Kiran, A. S., and Ramakrishna, S. 2018. A Review on Carbon Nanotubes in Biosensor Devices and Their Applications in Medicine. Nanocomposites. 4(2): 36-57.

https://doi.org/10.1080/20550324.2018.1478765.

Mohd Yusof, H., Rahman, A., Mohamad, R., Zaidan, U. H., and Samsudin, A. A. 2020. Biosynthesis of Zinc Oxide Nanoparticles by Cell-biomass and Supernatant of Lactobacillus Plantarum TA4 and its Antibacterial and Biocompatibility Properties. Scientific Reports. 10(1): 1-13.

https://doi.org/10.1038/s41598-020-76402-w.

AL-Anbari, R. H. 2018. Synthesis of Multi-walled Carbon Nanotubes Decorated with Zinc Oxide Nanoparticles for Removal of Pathogenic Bacterial. Engineering and Technology Journal. 36(10 Part A).

https://doi.org/10.30684/etj.36.10A.8.

Ribut, S. H., Abdullah, C. A. C., Mustafa, M., Yusoff, M. Z. M., and Azman, S. N. A. 2018. Influence of pH Variations on Zinc Oxide Nanoparticles and Their Antibacterial Activity. Materials Research Express. 6(2): 025016.

https://doi.org/10.1088/2053-1591/aaecbc.

Rafique, S., Bashir, S., Akram, R., Kiyani, F. B., Raza, S., Hussain, M., and Fatima, S. K. 2022. Variation in the Performance of MWCNT/ZnO Hybrid Material with pH for Efficient Antibacterial Agent. BioMed Research International. 2022. https://doi.org/10.1155/2022/1300157.

Mohammed, M. K., Ahmed, D. S., and Mohammad, M. R. 2019. Studying Antimicrobial Activity of Carbon Nanotubes Decorated with Metal-doped ZnO Hybrid Materials. Materials Research Express. 6(5): 055404. https://doi.org/10.1088/2053-1591/ab0687.

Shimizu, Y., Ateia, M., Wang, M., Awfa, D., and Yoshimura, C. 2019. Disinfection Mechanism of E. Coli by CNT-TiO2 Composites: Photocatalytic Inactivation vs. Physical Separation. Chemosphere. 235: 1041-1049. https://doi.org/10.1016/j.chemosphere.2019.07.006.

Mohamed, M., Osman, G., and Khairou, K. S. 2018. Titanium Dioxide-carbon Nanotubes Composites Immobilized Ag Nanoparticles: Enhanced Photocatalytic Bacterial Inactivation and Mechanistic Study International. Journal of Green Technology. 4: 7-23.

https://doi.org/10.30634/2414-2077.2018.04.2.

Li, J., Hou, X., Sun, T., Han, J., Liu, H., and Li, D. 2019. Hydrophilic, Antibacterial and Photocatalytic Properties of TiO2 Composite Films Modified by the Methods of N+ Ion Implantation and Doping of CNTs under Visible Light Irradiation. Surface and Coatings Technology. 365: 123-128.

https://doi.org/10.1016/j.surfcoat.2018.07.063.

He, J., Kumar, A., Khan, M., and Lo, I. M. 2021. Critical Review of Photocatalytic Disinfection of Bacteria: From Noble Metals-and Carbon Nanomaterials-TiO2 Composites to Challenges of Water Characteristics and Strategic Solutions. Science of the Total Environment. 758: 143953. https://doi.org/10.1016/j.scitotenv.2020.143953.

Shukla, A. K., Alam, J., Ansari, M. A., Alhoshan, M., Alam, M., and Kaushik, A. 2019. Selective Ion Removal and Antibacterial Activity of Silver-doped Multi-walled Carbon Nanotube/polyphenylsulfone Nanocomposite Membranes. Materials Chemistry and Physics. 233: 102-112. https://doi.org/10.1016/j.matchemphys.2019.05.054.

Lakourj, M. M., Norouzian, R. S., and Esfandyar, M. 2020. Conducting Nanocomposites of Polypyrrole-co-polyindole Doped with Carboxylated CNT: Synthesis Approach and Anticorrosion/Antibacterial/Antioxidation Property. Materials Science and Engineering: B. 261: 114673. https://doi.org/10.1016/j.mseb.2020.114673.

Jatoi, A. W., Ogasawara, H., Kim, I. S., and Ni, Q. Q. 2020. Cellulose Acetate/multi-Wall Carbon Nanotube/Ag Nanofiber Composite for Antibacterial Applications. Materials Science and Engineering: C. 110: 110679.

https://doi.org/10.1016/j.msec.2020.110679.

Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M. M. F. A., Ihsan, A. U., and Zhou, Q. G. 2019. Chitosan Oligosaccharide (COS): An Overview. International Journal of Biological Macromolecules. 129: 827-843. https://doi.org/10.1016/j.ijbiomac.2019.01.192.

Morsi, R. E., Alsabagh, A. M., Nasr, S. A., and Zaki, M. M. 2017. Multifunctional Nanocomposites of Chitosan, Silver Nanoparticles, Copper Nanoparticles and Carbon Nanotubes for Water Treatment: Antimicrobial Characteristics. International Journal of Biological Macromolecules. 97: 264-269.

https://doi.org/10.1016/j.ijbiomac.2017.01.032.

Khoerunnisa, F., Rahmah, W., Ooi, B. S., Dwihermiati, E., Nashrah, N., Fatimah, S., and Ng, E. P. 2020. Chitosan/PEG/MWCNT/Iodine Composite Membrane with Enhanced Antibacterial Properties for Dye Wastewater Treatment. Journal of Environmental Chemical Engineering. 8(2): 103686. https://doi.org/10.1016/j.jece.2020.103686.

Hamouda, H. I., Abdel-Ghafar, H. M., and Mahmoud, M. H. H. 2021. Multi-walled Carbon Nanotubes Decorated with Silver Nanoparticles for Antimicrobial Applications. Journal of Environmental Chemical Engineering. 9(2): 105034. https://doi.org/10.1016/j.jece.2021.105034.

Mohammed, M. K., Mohammad, M. R., Jabir, M. S., and Ahmed, D. S. 2020. Functionalization, Characterization, and Antibacterial Activity of Single Wall and Multi Wall Carbon Nanotubes. IOP Conference Series: Materials Science and Engineering. 757(1): 012028. IOP Publishing. https://doi.org/10.1088/1757-899X/757/1/012028.

Yang, C., Mamouni, J., Tang, Y., and Yang, L. 2010. Antimicrobial Activity of Single-walled Carbon Nanotubes: Length Effect. Langmuir. 26(20): 16013-16019. https://doi.org/10.1021/la103110g.

Ding, L., Wang, H., Liu, D., Zeng, X. A., and Mao, Y. 2020. Bacteria Capture and Inactivation with Functionalized Multi-Walled Carbon Nanotubes (MWCNTs). Journal of Nanoscience and Nanotechnology. 20(4): 2055-2062. https://doi.org/10.1166/jnn.2020.17332.

Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., and Chen, Y. 2009. Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano. 3(12): 3891-3902.

https://doi.org/10.1021/nn901252r.

Gharib, D. H., Malherbe, F., and Moulton, S. E. 2018. Debundling, Dispersion, and Stability of Multiwalled Carbon Nanotubes Driven by Molecularly Designed Electron Acceptors. Langmuir. 34(40): 12137-12144.

https://doi.org/10.1021/acs.langmuir.8b02878.

Muguruma, H., Iwasa, H., Hidaka, H., Hiratsuka, A., and Uzawa, H. 2017. Mediatorless Direct Electron Transfer Between Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase and Single-walled Carbon Nanotubes. ACS Catalysis. 7(1): 725-734.

https://doi.org/10.1021/acscatal.6b02470.

Yu, T., Gong, Y., Lu, T., Wei, L., Li, Y., Mu, Y., and Liao, K. 2012. Recognition of Carbon Nanotube Chirality by Phage Display. RSC Advances. 2(4): 1466-1476.

https://doi.org/10.1039/C1RA00581B.

Bonilla-Represa, V. Abalos-Labruzzi, C. Herrera-Martinez, M. Guerrero-Pérez, M.O. 2020. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials. 10: 1770.

https://doi.org/10.3390/nano10091770.

Castro-Rojas, M. A., Vega-Cantu, Y. I., Cordell, G. A., and Rodriguez-Garcia, A. 2021. Dental Applications of Carbon Nanotubes. Molecules. 26(15): 4423. https://doi.org/10.3390/molecules26154423.

Kechagioglou, P.; Andriotis, E.; Papagerakis, P.; Papagerakis, S. 2019. Multiwalled Carbon Nanotubes for Dental Applications. Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA. 192: 121-128.

https://doi.org/10.1007/978-1-4939-9012-2_12.

Cao, J., Lu, Y., Chen, H., Zhang, L., and Xiong, C. 2019. Preparation, Properties and in Vitro Cellular Response of Multi-walled Carbon Nanotubes/bioactive glass/poly (etheretherketone) Biocomposite for Bone Tissue Engineering. International Journal of Polymeric Materials and Polymeric Biomaterials. 68(8): 433-441. https://doi.org/10.1080/00914037.2018.1455679.

Neel, E. A. A., Chrzanowski, W., Salih, V. M., Kim, H.-W. Knowles, J. C. 2014. Tissue Engineering in Dentistry. Journal of Dentistry. 42: 915-928.

https://doi.org/10.1016/j.jdent.2014.05.008.

Mousavi, S. M., Yousefi, K., Hashemi, S. A., Afsa, M., BahranI, S., Gholami, A., and Chiang, W. H. 2021. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. Nanomaterials. 11(11): 2800. https://doi.org/10.3390/nano11112800.

Kiran, A. R., Kumari, G. K., and Krishnamurthy, P. T. 2020. Carbon Nanotubes in Drug Delivery: Focus on Anticancer Therapies. Journal of Drug Delivery Science and Technology. 59: 101892.

https://doi.org/10.1016/j.jddst.2020.101892.

Kleverlaan, C. J. Van Duinen, R. N. B. Feilzer, A. J. 2004. Mechanical Properties of Glass Ionomer Cements Affected by Curing Methods. Dental Material. 20: 45-50. https://doi.org/10.1016/S0109-5641(03)00067-8.

Rosa, V. Della Bona, A. Cavalcanti, B. Nör, J. E. 2012. Tissue Engineering: From Research to Dental Clinics. Dental Material. 28: 341-348.

https://doi.org/10.1016/j.dental.2011.11.025.

Coleman, J. N. Khan, U. Gun’ko, Y. K. 2006. Mechanical Reinforcement of Polymers using Carbon Nanotubes. Advance Material. 18: 689-706.

https://doi.org/10.1002/adma.200501851.

McIntyre, R. A. Common Nano-materials and Their use in Real World Applications. Science Progress. 95: 1-22 https://doi.org/10.3184/003685012X13294715456431.

Fernando, D. Attik, N. Pradelle-Plasse, N. Jackson, P. Grosgogeat, B. Colon, P. Bioactive Glass for Dentin Remineralization: A Systematic Review. Material Science Engineering C. 76: 1369-1377. https://doi.org/10.1016/j.msec.2017.03.083.

Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., and Elharfi, A. 2021. Polymer Composite Materials: A Comprehensive Review. Composite Structures. 262: 113640. https://doi.org/10.1016/j.compstruct.2021.113640.

Moniruzzaman, M. and Winey, K. L. 2006. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules. 39(16): 5194-5195. https://doi.org/10.1021/ma060733p.

Pennisi, P. R. C., Silva, P. U. J., Valverde, F. S., Clemente, T. C., Cerri, V., Biaco, M. E., and Moffa, E. B. 2021. Flexural Strength of An Indirect Composite Modified with Single-Wall Carbon Nanotubes. European Journal of Dentistry. https://doi.org/10.1055/s-0040-1721315.

Borges, A. L., Tribst, J. P., Dal Piva, A. M., and Souza, A. C. O. 2020. In Vitro Evaluation of Multi-walled Carbon Nanotube Reinforced Nanofibers Composites for Dental Application. International Journal of Polymeric Materials and Polymeric Biomaterials. 69(16): 1015-1022. https://doi.org/10.1080/00914037.2019.1655746.

Moura, M. S. Sousa, G. P. Brito, M. H. S. F. Silva, M. C. C. Lima, M. D. M. Moura, L. F. A. D. Lima, C. C. B. 2020. Does Low-cost GIC Have the Same Survival Rate as High-Viscosity GIC in Atraumatic Restorative Treatments? A RCT. Brazilian Oral Research. 24: 125.

https://doi.org/10.1590/1807-3107bor-2019.vol33.0125.

Scholtanus, J. D. and Huysmans, M. C. 2007. Clinical Failure of Class-II Restorations of a Highly Viscous Glass-Ionomer Material over a 6-year Period: A Retrospective Study. Journal of Dentistry. 35: 156-162.

https://doi.org/10.1016/j.jdent.2006.07.006.

AlMufareh, N. A., AlQhtani, F. A., and AlKhureif, A. 2021. Comparing the Effects of Carbon-and Silver Oxide-Particles on the Physical and Mechanical Properties of Glass-Ionomer Cements: An in Vitro Study. Materials Express. 11(2): 271-277.

https://doi.org/10.1166/mex.2021.1894.

Spinola, M., Dal Piva, A. M. O., Barbosa, P. U., Torres, C. R. G., and Bresciani, E. 2021. Mechanical Assessment of Glass Ionomer Cements Incorporated with Multi-Walled Carbon Nanotubes for Dental Applications. Oral. 1(3): 190-198.

https://doi.org/10.3390/oral1030019.

Goyal, M., and Sharma, K. 2021. Novel Multi-walled Carbon Nanotube Reinforced Glass-ionomer Cements for Dental Restorations. Materials Today: Proceedings. 37: 3035-3037.

https://doi.org/10.1016/j.matpr.2020.08.728.

Nahorny, S., Zanin, H., Christino, V. A., Marciano, F. R., Lobo, A. O., and Soares, L. E. S. 2017. Multi-walled Carbon Nanotubes/Graphene Oxide Hybrid and Nanohydroxyapatite Composite: A Novel Coating to Prevent Dentin Erosion. Materials Science and Engineering: C. 79: 199-208.

https://doi.org/10.1016/j.msec.2017.05.022.

Mostafavi, E., Soltantabar, P., and Webster, T. J. 2019. Nanotechnology and Picotechnology: A New Arena for Translational Medicine. Biomaterials in Translational Medicine. 191-212. Academic Press.

https://doi.org/10.1016/B978-0-12-813477-1.00009-8.

Jung, R. E. Windisch, S. I. Eggenschwiler, A. M. Thoma, D. S. Weber, F. E. Hämmerle, C. H. F. A Randomized-Controlled Clinical Trial Evaluating Clinical and Radiological Outcomes After 3 and 5 Years of Dental Implants Placed in Bone Regenerated by Means of GBR Techniques with or without the Addition of BMP-2. Clinical Oral Implant Research. 20: 660–666.

https://doi.org/10.1111/j.1600-0501.2008.01648.x,

Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N., and Selvamurugan, N. 2010. Polymeric Composites Containing Carbon Nanotubes for Bone Tissue Engineering. International Journal of Biological Macromolecules. 46(3): 281-283.

https://doi.org/10.1016/j.ijbiomac.2010.01.006.

Vittorio, O., Raffa, V., and Cuschieri, A. 2009. Influence of Purity and Surface Oxidation on Cytotoxicity of Multiwalled Carbon Nanotubes with Human Neuroblastoma Cells. Nanomedicine: Nanotechnology, Biology and Medicine. 5(4): 424-431. https://doi.org/10.1016/j.nano.2009.02.006.

J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun’ko. 2006. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites. Carbon. 44: 16241652.

https://doi.org/10.1016/j.carbon.2006.02.038.

Zarei, M., Karbasi, S., Aslani, F. S., Zare, S., Koohi-Hosseinabad, O., and Tanideh, N. 2020. In Vitro and in Vivo Evaluation of Poly (3-hydroxybutyrate)/Carbon Nanotubes Electrospun Scaffolds for Periodontal Ligament Tissue Engineering. Journal of Dentistry. 21(1): 18. 10.30476/DENTJODS.2019.77869.

Akasaka, T., Watari, F., Sato, Y., and Tohji, K. 2006. Apatite Formation on Carbon Nanotubes. Materials Science and Engineering: C. 26(4): 675-678. https://doi.org/10.1016/j.msec.2005.03.009.

Ibara, A., Miyaji, H., Fugetsu, B., Nishida, E., Takita, H., Tanaka, S., and Kawanami, M. 2013. Osteoconductivity and Biodegradability of Collagen Scaffold Coated with Nano-β-TCP and Fibroblast Growth Factor 2. Journal of Nanomaterials.

https://doi.org/10.1155/2013/639502.

Murakami, S., Miyaji, H., Nishida, E., Kawamoto, K., Miyata, S., Takita, H., and Kawanami, M. 2017. Dose Effects of Beta-tricalcium Phosphate Nanoparticles on Biocompatibility and Bone Conductive Ability of Three-dimensional Collagen Scaffolds. Dental Materials Journal. 2016: 295.

https://doi.org/10.4012/dmj.2016-295.

Miyaji, H., Murakami, S., Nishida, E., Akasaka, T., Fugetsu, B., Umeda, J., and Sugaya, T. 2018. Evaluation of Tissue Behavior on Three-dimensional Collagen Scaffold Coated with Carbon Nanotubes and Β-Tricalcium Phosphate Nanoparticles. Journal of Oral Tissue Engineering. 15(3): 123-130.

https://doi.org/10.11223/jarde.15.123.

Yudianti, R., Onggo, H., Saito, Y., Iwata, T., and Azuma, J. I. 2011. Analysis of Functional Group Sited on Multi-Wall Carbon Nanotube Surface. The Open Materials Science Journal. 5(1): 242-247

https://doi.org/10.2174/1874088X01105010242.

Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., and Smalley, R. E. 1996. Crystalline Ropes of Metallic Carbon Nanotubes. Science. 273(5274): 483-487. https://doi.org/10.1126/science.273.5274.483.

Khan, A. S., Hussain, A. N., Sidra, L., Sarfraz, Z., Khalid, H., Khan, M., and Rehman, I. U. 2017. Fabrication and In Vivo Evaluation of Hydroxyapatite/Carbon Nanotube Electrospun Fibers for Biomedical/Dental Application. Materials Science and Engineering: C. 80: 387-396. https://doi.org/10.1016/j.msec.2017.05.109.

Fathy, S. M., Elkhooly, T. A., Emam, A. A., and Reicha, F. M. 2019. Evaluation of Naturally Derived Hydroxyapatite Tissue Engineering Scaffold Coated with Chitosan-Carbon Nanotubes Composite. Egyptian Dental Journal. 65(1): 463-474.

https://doi.org/10.21608/edj.2019.72722.

Hirschfeld, J., Akinoglu, E. M., Wirtz, D. C., Hoerauf, A., Bekeredjian-Ding, I., Jepsen, S., and Giersig, M. 2017. Long-Term Release of Antibiotics by Carbon Nanotube-Coated Titanium Alloy Surfaces Diminish Biofilm Formation by Staphylococcus epidermidis. Nanomedicine: Nanotechnology, Biology and Medicine. 13(4): 1587-1593.

https://doi.org/10.1016/j.nano.2017.01.002.

Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., and Jemal, A. 2020. Colorectal Cancer Statistics. CA: A Cancer Journal for Clinicians. 70(3): 145-164.

https://doi.org/10.3322/caac.21601.

El-Hussein, A., Manoto, S. L., Ombinda-Lemboumba, S., Alrowaili, Z. A., and Mthunzi-Kufa, P. 2021. A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 21(2): 149-161.

https://doi.org/10.2174/18715206MTA1uNjQp3.

Roma-Rodrigues, C., Rivas-García, L., Baptista, P. V., and Fernandes, A. R. 2020. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics. 12(3): 233. https://doi.org/10.3390/pharmaceutics12030233.

Xiang, M., Chang, D. T., and Pollom, E. L. 2020. Second Cancer Risk After Primary Cancer Treatment with Three‐Dimensional Conformal, Intensity‐Modulated, or Proton Beam Radiation Therapy. Cancer. 126(15): 3560-3568. https://doi.org/10.1002/cncr.32938.

Price, P., and Sikora, K. (Eds.). 2020. Treatment of Cancer. CRC Press.

https://doi.org/10.1201/9780429026638.

McKinnell, R. G., Parchment, R. E., Perantoni, A. O., and Pierce, G. B. 1998. The Biological Basis of Cancer. Cambridge University Press.

Jagodinsky, J. C., Harari, P. M., and Morris, Z. S. 2020. The Promise of Combining Radiation Therapy with Immunotherapy. International Journal of Radiation Oncology, Biology, Physics. 108(1): 6-16. https://doi.org/10.1016/j.ijrobp.2020.04.023.

Tarach, P., and Janaszewska, A. 2021. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. International Journal of Molecular Sciences. 22(6): 2912. https://doi.org/10.3390/ijms22062912.

Iijima, S. 1991. Helical Microtubules of Graphitic Carbon. Nature. 354(6348): 56-58.

https://doi.org/10.1038/354056a0.

Patel, J., Parikh, S., Patel, S., Patel, R., and Patel, P. 2021. Carbon Nanotube (CNTs): Structure, Synthesis, Purification, Functionalisation, Pharmacology, Toxicology, Biodegradation and Application as Nanomedicine and Biosensor: Carbon Nanotube (CNTs). The Journal of Pharmaceutical Sciences and Medicinal Research. 1(02): 017-044.

https://doi.org/10.53049/tjopam.2021.v001i02.008.

Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., and Mostafavi, E. 2021. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. International Journal of Nanomedicine. 16: 1681. https://doi.org/10.2147/IJN.S299448.

Sajjadi, M., Nasrollahzadeh, M., Jaleh, B., Soufi, G. J., and Iravani, S. 2021. Carbon-based Nanomaterials for Targeted Cancer Nanotherapy: Recent Trends and Future Prospects. Journal of Drug Targeting. 29(7): 716-741. https://doi.org/10.1080/1061186X.2021.1886301.

Mohseni-Dargah, M., Akbari-Birgani, S., Madadi, Z., Saghatchi, F., and Kaboudin, B. 2019. Carbon Nanotube-Delivered Ic9 Suicide Gene Therapy for Killing Breast Cancer Cells in Vitro. Nanomedicine. 14(8): 1033-1047.

https://doi.org/10.2217/nnm-2018-0342.

Kaboudin, B., Saghatchi, F., Kazemi, F., and Akbari‐Birgani, S. 2018. A Novel Magnetic Carbon Nanotubes Functionalized with Pyridine Groups: Synthesis, Characterization and Their Application as an Efficient Carrier for Plasmid DNA and Aptamer. ChemistrySelect. 3(24): 6743-6749.

https://doi.org/10.1002/slct.201800708.

Rossignoli, F., Grisendi, G., Spano, C., Golinelli, G., Recchia, A., Rovesti, G., and Dominici, M. 2019. Inducible Caspase9-Mediated Suicide Gene for MSC-Based Cancer Gene Therapy. Cancer Gene Therapy. 26(1): 11-16. https://doi.org/10.1038/s41417-018-0034-1.

Akinoglu, E. M., Ozbilgin, K., Sonmez, P. K., Ozkut, M. M., Giersig, M., Inan, S., and Kurtman, C. 2017. Biocompatibility of Vertically Aligned Multi-Walled Carbon Nanotube Scaffolds for Human Breast Cancer Cell Line MDA-MB-231. Progress in Biomaterials. 6(4): 189-196. https://doi.org/10.1007/s40204-017-0078-6.

Chan, S. S., Lee, D., Meivita, M. P., Li, L., Tan, Y. S., Bajalovic, N., and Loke, D. K. 2022. Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS Omega. https://doi.org/10.1021/acsomega.2c00842.

Shah, K. A., Parvaiz, M. S., and Dar, G. N. 2019. Photocurrent in Single Walled Carbon Nanotubes. Physics Letters A. 383(18): 2207-2212.

https://doi.org/10.1016/j.physleta.2019.04.024.

Guven, A., Villares, G. J., Hilsenbeck, S. G., Lewis, A., Landua, J. D., Dobrolecki, L. E., and Lewis, M. T. 2017. Carbon Nanotube Capsules Enhance the in Vivo Efficacy of Cisplatin. Acta Biomaterialia. 58: 466-478. https://doi.org/10.1016/j.actbio.2017.04.035.

Martinez-Useros, J., Li, W., Cabeza-Morales, M., and Garcia-Foncillas, J. 2017. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment. Journal of Clinical Medicine. 6(3): 29. https://doi.org/10.3390/jcm6030029.

Kim, S. W., Lee, Y. K., Lee, J. Y., Hong, J. H., and Khang, D. 2017. PEGylated Anticancer-Carbon Nanotubes Complex Targeting Mitochondria of Lung Cancer Cells. Nanotechnology. 28(46): 465102.

https://doi.org/10.1088/1361-6528/aa8c31.

Tan, Z., Xu, J., Zhang, B., Shi, S., Yu, X., and Liang, C. 2020. Hypoxia: A Barricade to Conquer the Pancreatic Cancer. Cellular and Molecular Life Sciences. 77(16): 3077-3083. https://doi.org/10.1007/s00018-019-03444-3.

Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., and Yang, S. 2021. Small Molecules in Targeted Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal Transduction and Targeted Therapy. 6(1): 1-48.

https://doi.org/10.1038/s41392-021-00572-w.

Lu, G. H., Shang, W. T., Deng, H., Han, Z. Y., Hu, M., Liang, X. Y., ... and Tian, J. 2019. Targeting Carbon Nanotubes Based on IGF-1R for Photothermal Therapy of Orthotopic Pancreatic Cancer Guided by Optical Imaging. Biomaterials. 195: 13-22.

https://doi.org/10.1016/j.biomaterials.2018.12.025.

Ren, X., Lin, J., Wang, X., Liu, X., Meng, E., Zhang, R., and Zhang, Z. 2017. Photoactivatable RNAi for Cancer Gene Therapy Triggered by Near-Infrared-Irradiated Single-Walled Carbon Nanotubes. International Journal of Nanomedicine. 12: 7885.

https://doi.org/10.2147/IJN.S141882.

Heineman, W. R., and Jensen, W. B. 2006. Leland C. Clark Jr. 1918–2005. Biosensors and Bioelectronics. 8(21): 1403-1404.

https://doi.org/10.1016/j.bios.2005.12.005.

Thevenot, D. R., Toth, K., Durst, R. A., and Wilson, G. S. 1999. Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry. 71(12): 2333-2348.

https://doi.org/10.1351/pac199971122333.

Karunakaran, C., Rajkumar, R., and Bhargava, K. 2015. Introduction to Biosensors. Biosensors and Bioelectronics. Elsevier. 1-68.

https://doi.org/10.1016/B978-0-12-803100-1.00001-3.

Yang, N., Chen, X., Ren, T., Zhang, P., and Yang, D. 2015. Carbon Nanotube-based Biosensors. Sensors and Actuators B: Chemical. 207: 690-715.

https://doi.org/10.1016/j.snb.2014.10.040.

Zhang, P., and Henthorn, D. B. 2010. Synthesis of PEGylated Single Wall Carbon Nanotubes by a Photoinitiated Graft from Polymerization. AIChE Journal. 56(6): 1610-1615.

https://doi.org/10.1002/aic.12108.

Wee, Y., Park, S., Kwon, Y. H., Ju, Y., Yeon, K. M., and Kim, J. 2019. Tyrosinase-Immobilized CNT Based Biosensor for Highly-sensitive Detection of Phenolic Compounds. Biosensors and Bioelectronics. 132: 279-285. https://doi.org/10.1016/j.bios.2019.03.008.

Huang, X., Xu, S., Zhao, W., Xu, M., Wei, W., Luo, J., and Liu, X. 2020. Screen-Printed Carbon Electrodes Modified with Polymeric Nanoparticle-carbon Nanotube Composites for Enzymatic Biosensing. ACS Applied Nano Materials. 3(9): 9158-9166.

https://doi.org/10.1021/acsanm.0c01800.

Othman, A. M., and Wollenberger, U. 2020. Amperometric Biosensor Based on Coupling Aminated Laccase to Functionalized Carbon Nanotubes for Phenolics Detection. International Journal of Biological Macromolecules. 153: 855-864.

https://doi.org/10.1016/j.ijbiomac.2020.03.049.

Ghanei Agh Kaariz, D., Darabi, E., and Elahi, S. M. 2020. Fabrication of Au/ZnO/MWCNTs Electrode and its Characterization for Electrochemical Cholesterol Biosensor. Journal of Theoretical and Applied Physics. 14(4): 339-348. https://doi.org/10.1007/s40094-020-00390-5.

Fu, Y., Romay, V., Liu, Y., Ibarlucea, B., Baraban, L., Khavrus, V., and Cuniberti, G. 2017. Chemiresistive Biosensors Based on Carbon Nanotubes for Label-Free Detection of DNA Sequences Derived from Avian Influenza Virus H5N1. Sensors and Actuators B: Chemical. 249: 691-699.

https://doi.org/10.1016/j.snb.2017.04.080.

Rashid, S., Nawaz, M. H., ur Rehman, I., Hayat, A., and Marty, J. L. 2021. Dopamine/Mucin-1 Functionalized Electro-Active Carbon Nanotubes as a Probe for Direct Competitive Electrochemical Immunosensing of Breast Cancer Biomarker. Sensors and Actuators B: Chemical. 330:129351. https://doi.org/10.1016/j.snb.2020.129351.

Kim, K., Kim, M. J., Kim, D. W., Kim, S. Y., Park, S., and Park, C. B. 2020. Clinically Accurate Diagnosis of Alzheimer’s Disease via Multiplexed Sensing of Core Biomarkers in Human Plasma. Nature Communications. 11(1): 1-9.

https://doi.org/10.1038/s41467-019-13901-z.

Califf, R. M. 2018. Biomarker Definitions and Their Applications. Experimental Biology and Medicine. 243(3): 213-221.

https://doi.org/10.1177/1535370217750088.

Cheng, H. K. F., Basu, T., Sahoo, N. G., Li, L., & Chan, S. H. (2012). Current Advances in the Carbon Nanotube/thermotropic Main-chain Liquid Crystalline Polymer Nanocomposites and Their Blends. Polymers. 4(2): 889-912.

https://doi.org/10.3390/polym4020889.

Downloads

Published

2023-02-23

Issue

Section

Science and Engineering

How to Cite

RECENT MODIFICATIONS OF CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS. (2023). Jurnal Teknologi (Sciences & Engineering), 85(2), 83-100. https://doi.org/10.11113/jurnalteknologi.v85.19253