RECENT TRENDS IN DIFFERENT TYPES OF SYNTHETIC HYDROPHILIC POLYMER NANOPARTICLES, METHODS OF SYNTHESIS & THEIR APPLICATIONS
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.19259Keywords:
Hydrophilic polymer, polymeric nanoparticles, polymerization, medical, synthetic polymerAbstract
Numerous types of hydrophilic polymer nanoparticles (NPs) have recently become research hotspots because of their ability to dissolve in water and can be adapted with respect to physical, chemical, and biological properties to meet the requirements of different applications. Synthetic hydrophilic polymeric NPs had successfully gained much attention because of their unique physicochemical properties, such as low toxicity, biodegradability, bioavailability, and support material for extensive swelling in water. These synthetic hydrophilic polymers NPs create new opportunities to produce water-soluble polymer types that would be able to imitate the structure and function of biological polymers. Several synthetic hydrophilic polymer NPs that gain high interest recently including poly(N-isopropyl acrylamide) (PNIPAM), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and poly(N-(2-hydroxypropyl) methacrylamide (PHPMA) are reviewed in this paper. Furthermore, various synthesis methods to produce synthetic hydrophilic polymer NPs for instance emulsion polymerization, microemulsion polymerization and inverse miniemulsion polymerization are highlighted, and a brief overview on their recent applications especially in medical applications are also be discussed thoroughly in this review.
References
Sahu, T., Ratre, Y. K., Chauhan, S., Bhaskar, L. V. K. S., Nair, M. P., & Verma, H. K. 2021. Nanotechnology Based Drug Delivery System: Current Strategies and Emerging Therapeutic Potential for Medical Science. Journal of Drug Delivery Science and Technology. 63: 102487.
https://doi.org/10.1016/j.jddst.2021.102487.
Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., & Souto, E. B. 2020. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 25(16): 3731.
https://doi.org/10.3390/molecules25163731.
Kargozar, S., & Mozafari, M. 2018. Nanotechnology and Nanomedicine: Start Small, Think Big. Materials Today: Proceedings. 5(7): 15492-15500.
https://doi.org/10.1016/j.matpr.2018.04.155z.
Wagner, W. R., Sakiyama-Elbert, S. E., Zhang, G., & Yaszemski, M. J. 2020. Nanoparticles. Biomaterials Science. Elsevier Academic Press, United States of America. 453-243.
https://doi.org/10.1016/C2017-0-02323-6.
Khan, I., Saeed, K., & Khan, I. 2019. Nanoparticles: Properties, Applications, And Toxicities. Arabian Journal of Chemistry. 12(7): 908-931.
https://doi.org/10.1016/j.arabjc.2017.05.011.
Madkour, L. H. 2019. Nanoparticle and Polymeric Nanoparticle-based Targeted Drug Delivery Systems. Nucleic Acids as Gene Anticancer Drug Delivery Therapy. Elsevier/Academic Press, United States of America. 191-240.
https://doi.org/10.1016/C2019-0-00456-6.
Vasile, C., Volume, E. S., Vasile, E. C., & Kozlowski, M. 2019. Polymeric Nanomaterials for Nanotherapeutics in Micro and Nano Technologies Series. Polymers. 11(9): 1452.
https://doi.org/10.3390%2Fpolym11091452.
Jain, D., Carvalho, E., Banthia, A. K., & Banerjee, R. 2011. Development of Polyvinyl Alcohol-Gelatin Membranes for Antibiotic Delivery in the Eye. Drug Development and Industrial Pharmacy. 37(2): 167-177.
https://doi.org/10.3109/03639045.2010.502533.
Idrees, H., Zaidi, S., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. U. 2020. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials. 10(10): 1970.
https://doi.org/10.3390/nano10101970.
Nagarwal, R. C., Singh, P. N., Kant, S., Maiti, P., & Pandit, J. K. 2010. Chitosan Coated PLA Nanoparticles for Ophthalmic Delivery: Characterization, In-Vitro and In-Vivo Study in Rabbit Eye. Journal of Biomedical Nanotechnology. 6(6): 648-657.
https://doi.org/10.1166/jbn.2010.1168.
Tundisi, L. L., Mostaço, G. B., Carricondo, P. C., & Petri, D. F. S. 2021. Hydroxypropyl Methylcellulose: Physicochemical Properties and Ocular Drug Delivery Formulations. European Journal of Pharmaceutical Sciences.159: 105736.
https://doi.org/10.1016/j.ejps.2021.105736.
Banik, B. L., Fattahi, P., & Brown, J. L. 2016. Polymeric Nanoparticles: The Future of Nanomedicine. WIREs Nanomedicine and Nanotechnology. 8: 271-299.
https://doi.org/10.1002/wnan.1364.
Fattahi, F.-S., & Zamani, T. 2020. Synthesis of Polylactic Acid Nanoparticles for the Novel Biomedical Applications: A Scientific Perspective. Nanochemistry Research. 5(1): 1-13. https://doi.org/10.22036/ncr.2020.01.001.
Anwar, M., Muhammad, F., & Akhtar, B. 2021. Biodegradable Nanoparticles as Drug Delivery Devices. Journal of Drug Delivery Science and Technology. 64: 102638.
https://doi.org/10.1016/j.jddst.2021.102638.
Ghosh, P. K. 2000. Hydrophilic Polymeric Nanoparticles as Drug Carriers. Indian Journal of Biochemistry & Biophysics. 37(5): 273-282
http://nopr.niscpr.res.in/handle/123456789/19833.
Rao, J. P., & Geckeler, K. E. 2011. Polymer Nanoparticles: Preparation Techniques and Size-Control Parameters. Progress in Polymer Science (Oxford). 36(7): 887-913.
https://doi.org/10.1016/j.progpolymsci.2011.01.001.
Grumezescu, A. M. 2017. Nanoarchitectures for Neglected Tropical Protozoal Disease: Challenges and State of the Art. Nano- and Microscale Drug Delivery Systems: Design and Fabrication. Elsevier, United States of America. 17-32.
https://doi.org/10.1016/B978-0-323-52727-9.00002-9.
Galbis, J. A., García-Martín, M. D. G., De Paz, M. V., & Galbis, E. 2016. Synthetic Polymers from Sugar-based Monomers. Chemical Reviews. 116(3): 1600-1636.
https://doi.org/10.1021/acs.chemrev.5b00242.
Deka, S. R., Sharma, A. K., & Kumar, P. 2021. Synthesis and Evaluation of Poly(N-Isopropylacrylamide)-Based Stimuli-Responsive Biodegradable Carrier with Enhanced Loading Capacity and Controlled Release Properties. Tetrahedron. 80: 131887.
https://doi.org/10.1016/j.tet.2020.131887.
Haq, M. A., Su, Y., & Wang, D. 2017. Mechanical Properties of PNIPAM Based Hydrogels: A Review. Materials Science and Engineering C. 70: 842-855.
https://doi.org/10.1016/j.msec.2016.09.081.
Cao, M., Shen, Y., Yan, Z., Wei, Q., Jiao, T., Shen, Y., Han, Y., Wang, Y., Wang, S., Xia, Y., & Yue, T. 2021. Extraction-Like Removal of Organic Dyes from Polluted Water by the Graphene Oxide/PNIPAM Composite System. Chemical Engineering Journal. 405: 12664.
https://doi.org/10.1016/j.cej.2020.126647.
De Oliveira, T. E., Mukherji, D., Kremer, K., & Netz, P. A. 2017. Effects of Stereochemistry and Copolymerization on the LCST of PNIPAM. Journal of Chemical Physics. 146(3): 034904.
https://doi.org/10.1063/1.4974165.
Azmi, N. S., Kamaruddin, N. N., Kassim, S., & Harun, N. A. 2018. Synthesis And Characterization of Hydrophilic Polymer Nanoparticles Using N-Isopropylacrylamide (NIPAM) Via Emulsion Polymerization Technique. IOP Conference Series: Materials Science and Engineering. 440(1): 012008.
https://doi.org/10.1088/1757-899X/440/1/012008.
Metawea, O. R. M., Abdelmoneem, M. A., Haiba, N. S., Khalil, H. H., Teleb, M., Elzoghby, A. O., Khafaga, A. F., Noreldin, A. E., Albericio, F., & Khattab, S. N. 2021. A Novel ‘Smart’ PNIPAM-Based Copolymer for Breast Cancer Targeted Therapy: Synthesis, and Characterization of Dual Ph/Temperature-Responsive Lactoferrin-Targeted PNIPAM-co-AA. Colloids and Surfaces B: Biointerfaces. 202: 111694.
https://doi.org/10.1016/j.colsurfb.2021.111694.
Lin. Y., Ling, W., Xiao, Y., Yiyu, F., Yu, L. & Wei, F. 2021. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Progress in Materials Science. 115: 100702.
https://doi.org/10.1016/j.pmatsci.2020.100702.
Yoon, D.M., Fisher J.P. 2009. Natural and Synthetic Polymeric Scaffolds. In: Narayan R. (eds). Biomedical Materials. Springer, Boston, MA. 415-442.
https://doi.org/10.1007/978-3-030-49206-9_6.
Yang, J. 2017. The Light at the End of the Tunnel - Second Generation HPMA Conjugates for Cancer Treatment. Current Opinion in Colloid & Interface Science. 31: 30-42. https://doi.org/10.1016/j.cocis.2017.07.003.
Fu, Y., Ding, Y., Zhang, L., Zhang, Y., Liu, J., & Yu, P. 2021. Polyethylene Glycol (PEG)-Related Controllable and Sustainable Antidiabetic Drug Delivery Systems. European Journal of Medicinal Chemistry. 217: 113372.
https://doi.org/10.1016/j.ejmech.2021.113372.
Badi, N. 2016. Non-Linear PEG-Based Thermoresponsive Polymer Systems. Progress in Polymer Science. 66: 54-79.
https://doi.org/10.1016/j.progpolymsci.2016.12.006.
D’souza, A. A., & Shegokar, R. 2016. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert Opinion on Drug Delivery. 13(9): 1257-1275.
https://doi.org/10.1080/17425247.2016.1182485.
Peng, Z., Ji, C., Zhou, Y., Zhao, T., & Leblanc, R. M. 2020. Polyethylene Glycol (PEG) Derived Carbon Dots: Preparation and Applications. Applied Materials Today. 20: 100677.
https://doi.org/10.1016/j.apmt.2020.100677.
Yang, K., Wiener, J., Venkataraman, M., Wang, Y., Yang, T., Zhang, G., Zhu, G., Yao, J., & Militky, J. 2021. Thermal Analysis of PEG/Metal Particle-coated Viscose Fabric. Polymer Testing. 100: 107231.
https://doi.org/10.1016/j.polymertesting.2021.107231.
Tabasum, S., Noreen, A., Maqsood, M. F., Umar, H., Akram, N., Nazli, Z. i. H., Chatha, S. A. S., & Zia, K. M. 2018. A Review on Versatile Applications of Blends and Composites of Pullulan with Natural and Synthetic Polymers. International Journal of Biological Macromolecules. 120: 603-632.
https://doi.org/10.1016/j.ijbiomac.2018.07.154.
Abdullah, O. G., Ahmed, H. T., Tahir, D. A., Jamal, G. M., & Mohamad, A. H. 2021. Influence of PEG Plasticizer Content on the Proton-conducting PEO:MC-NH4I Blend Polymer Electrolytes-based Films. Results in Physics. 23: 104073.
https://doi.org/10.1016/j.rinp.2021.104073.
Wang, J., Youngblood, R., Cassinotti, L., Skoumal, M., Corfas, G., & Shea, L. 2021. An Injectable PEG Hydrogel Controlling Neurotrophin-3 Release by Affinity Peptides. Journal of Controlled Release. 330: 575-586.
https://doi.org/10.1016/j.jconrel.2020.12.045.
Demerlis, C. C., & Schoneker, D. R. 2003. Review of the Oral Toxicity of Polyvinyl Alcohol (PVA). Food and Chemical Toxicology. 41: 319-326.
https://doi.org/10.1016/s0278-6915(02)00258-2.
Baghaie, S., Khorasani, M. T., & Zarrabi, A. 2017. Wound Healing Properties of PVA/Starch/Chitosan Hydrogel Membranes with Nano Zinc Oxide as Antibacterial Wound Dressing Material Wound Healing Properties of PVA/Starch/Chitosan Hydrogel Membranes with Nano Zinc Oxide as Antibacterial Wound Dressing Material. Journal of Biomaterials Science, Polymer Edition. 28(18): 2220-2241. https://doi.org/10.1080/09205063.2017.1390383.
Ma, Y., Bai, T., & Wang, F. 2016. The Physical and Chemical Properties of the Polyvinylalcohol/Polyvinylpyrrolidone/Hydroxyapatite Composite Hydrogel. Materials Science and Engineering C. 59: 948-957.
https://doi.org/10.1016/j.msec.2015.10.081.
Abral, H., Atmajaya, A., Mahardika, M., Hafizulhaq, F., Handayani, D., Sapuan, S. M., & Ilyas, R. A. 2019. Effect of Ultrasonication Duration of Polyvinyl Alcohol (PVA) Gel on Characterizations of PVA Film. Integrative Medicine Research. 9(2): 2477-2486.
https://doi.org/10.1016/j.jmrt.2019.12.078.
Sau, S., Pandit, S., & Kundu, S. 2021. Crosslinked Poly (Vinyl Alcohol): Structural, Optical, and Mechanical Properties. Surfaces and Interfaces. 25: 101198.
https://doi.org/10.1016/j.surfin.2021.101198.
Thong, C. C., Teo, D. C. L., & Ng, C. K. 2016. Application of Polyvinyl Alcohol (PVA) In Cement-based Composite Materials: A Review of Its Engineering Properties and Microstructure Behavior. Construction and Building Materials. 107: 172-180.
https://doi.org/10.1016/j.conbuildmat.2015.12.188.
Stachowiak, N., Kowalonek, J., & Kozlowska, J. 2020. Effect of Plasticizer and Surfactant on the Properties of Poly (Vinyl Alcohol)/Chitosan Films. International Journal of Biological Macromolecules. 164: 2100-2107.
https://doi.org/10.1016/j.ijbiomac.2020.08.001.
Yang, X., Wang, B., Sha, D., Liu, Y., Xu, J., Shi, K., Yu, C., & Ji, X. 2021. Injectable and Antibacterial Ε-Poly(L-Lysine)-Modified Poly (Vinyl Alcohol)/Chitosan/AgNPs Hydrogels as Wound Healing Dressings. Polymer. 212: 123155.
https://doi.org/10.1016/j.polymer.2020.123155.
Rivera-Hernández, G., Antunes-Ricardo, M., Martínez-Morales, P., & Sánchez, M. L. 2021. Polyvinyl Alcohol Based-drug Delivery Systems for Cancer Treatment. International Journal of Pharmaceutics. 600: 1-11.
https://doi.org/10.1016/j.ijpharm.2021.120478.
Narasagoudr, S. S., Hegde, V. G., Chougale, R. B., Masti, S. P., & Dixit, S. 2020. Influence of Boswellic Acid on Multifunctional Properties of Chitosan/Poly (Vinyl Alcohol) Films for Active Food Packaging. International Journal of Biological Macromolecules. 154: 48-61.
https://doi.org/10.1016/j.ijbiomac.2020.03.073.
Li, L., Xu, X., Liu, L., Song, P., Cao, Q., Xu, Z., Fang, Z., & Wang, H. 2021. Water Governs the Mechanical Properties of Poly (Vinyl Alcohol). Polymer. 213: 123330.
https://doi.org/10.1016/j.polymer.2020.123330.
Morariu, S., Bercea, M., Gradinaru, L. M., Rosca, I., & Avadanei, M. 2020. Versatile Poly (Vinyl Alcohol)/Clay Physical Hydrogels with Tailorable Structure as Potential Candidates for Wound Healing Applications. Materials Science and Engineering C. 109: 110395.
https://doi.org/10.1016/j.msec.2019.110395.
Abdelamir, A. I., Al-Bermany, E., & Hashim, F. S. 2020. Important Factors Affecting the Microstructure and Mechanical Properties of PEG/GO-based Nanographene Composites Fabricated Applying Assembly-acoustic Method. AIP Conference Proceedings. 2213(1): 1-13.
https://doi.org/10.1063/5.0000175.
Bobde, Y., Biswas, S., & Ghosh, B. 2020. Current Trends in the Development of HPMA-based Block Copolymeric Nanoparticles for Their Application in Drug Delivery. European Polymer Journal. 139: 110018.
https://doi.org/10.1016/j.eurpolymj.2020.110018.
Rani, S., & Gupta, U. 2020. HPMA-based Polymeric Conjugates in Anticancer Therapeutics. Drug Discovery Today. 25(6): 997-1012.
https://doi.org/10.1016/j.drudis.2020.04.007.
Francini, N., Purdie, L., Alexander, C., Mantovani, G., & Spain, S. G. 2015. Multifunctional Poly[N-(2-hydroxypropyl) Methacrylamide] Copolymers Via Postpolymerization Modification and Sequential Thiol-Ene Chemistry. Macromolecules. 48(9): 2857-2863.
https://doi.org/10.1021/acs.macromol.5b00447.
Sponchioni, M., Morosi, L., Lupi, M., & Capasso Palmiero, U. 2017. Poly(HPMA)-based Copolymers with Biodegradable Side Chains Able to Self-assemble into Nanoparticles. RSC Advances. 7(80): 50981-50992.
https://doi.org/10.1039/C7RA11179G.
Bobde, Y., Biswas, S., & Ghosh, B. 2020. PEGylated N-(2 hydroxypropyl) Methacrylamide-Doxorubicin Conjugate as Ph-Responsive Polymeric Nanoparticles for Cancer Therapy. Reactive and Functional Polymers. 151: 104561.
https://doi.org/10.1016/j.reactfunctpolym.2020.104561.
Randárová, E., Kudláčová, J., & Etrych, T. 2020. HPMA Copolymer-antibody Constructs in Neoplastic Treatment: An Overview of Therapeutics, Targeted Diagnostics, and Drug-Free Systems. Journal of Controlled Release. 325: 304-322.
https://doi.org/10.1016/j.jconrel.2020.06.040.
Xu, W., Li, G., Long, H., Fu, G., & Pu, L. 2019. Glutathione Responsive Poly(HPMA) Conjugate Nanoparticles for Efficient 6-MP Delivery. New Journal of Chemistry. 43(31): 12215-12220.
https://doi.org/10.1039/C9NJ02582K.
Englert, C., Brendel, J. C., Majdanski, T. C., Yildirim, T., Schubert, S., Gottschaldt, M., Windhab, N., & Schubert, U. S. 2018. Pharmapolymers in the 21st Century: Synthetic Polymers in Drug Delivery Applications. Progress in Polymer Science. 87: 107-164.
https://doi.org/10.1016/j.progpolymsci.2018.07.005.
Grumezescu, A. M. 2018. Synthesis and Evolution of Polymeric Nanoparticles: Development of an Improved Gene Delivery System. Design and Development of New Nanocarriers. William Andrew Publishing, United States of America. 401-438.
https://doi.org/10.1016/B978-0-12-813627-0.00011-9.
Chern, C. S. 2006. Emulsion Polymerization Mechanisms and Kinetics. Progress in Polymer Science (Oxford). 31(5): 443-486.
https://doi.org/10.1016/j.progpolymsci.2006.02.001.
Nagavarma, B. V. N., Yadav, H. K. S., Ayaz, A., Vasudha, L. S., & Shivakumar, H. G. 2012. Different Techniques for Preparation of Polymeric Nanoparticles - A Review. Asian Journal of Pharmaceutical and Clinical Research. 5: 16-23.
Lovell, P. A., & Schork, F. J. 2020. Fundamentals of Emulsion Polymerization. Biomacromolecules. 21(11): 4396-4441.
https://doi.org/10.1021/acs.biomac.0c00769.
Thickett, S. C., & Gilbert, R. G. 2007. Emulsion Polymerization: State of The Art in Kinetics and Mechanisms. Polymer. 48(24): 6965-6991.
https://doi.org/10.1016/j.polymer.2007.09.031.
Poveda, J. 2021. Beneficial Effects of Microbial Volatile Organic Compounds (MVOCs) in Plants. Applied Soil Ecology. 168: 104118.
https://doi.org/10.1016/j.apsoil.2021.104118.
Harun, N. A., Chen, L. P., Zainudin, A. A., Tzy, T. Y., & Yusoff, F. 2021. Copolymerisation of Methyl Methacrylate and Hydroxypropyl Methylcellulose Via Emulsion Polymerisation Technique. Malaysian Journal of Analytical Sciences. 25(1): 105-118. Retrieved from https://mjas.analis.com.my/.
Harun, N. A., Zain, N. F. Z. M., Saadon, M., & Rafi, F. R. M. 2017. Synthesis and Characterization of a Series of Hydrophilic Polymer Nanoparticles Prepared Via Emulsion Polymerization Technique. Journal of Sustainability Science and Management. 2017(2): 1-7. Retrieved from https://jssm.umt.edu.my/.
Liu, L., Xiang, P., & Huang, Y. 2020. Synthesis and Study on Thermal Stability of PMMA Microspheres by Emulsion Polymerization. Journal of Physics: Conference Series. 1549: 032094. Retrieved from https://iopscience.iop.org/journal/.
Sahu, A., Solanki, P., & Mitra, S. 2018. Curcuminoid-loaded Poly(Methyl Methacrylate) Nanoparticles for Cancer Therapy. International Journal of Nanomedicine. 13: 101-105.
https://doi.org/10.2147%2FIJN.S124021.
GuhaSarkar, S., & Banerjee, R. 2010. Intravesical Drug Delivery: Challenges, Current Status, Opportunities and Novel Strategies. Journal of Controlled Release. 148(2): 147-159.
https://doi.org/10.1016/j.jconrel.2010.08.031.
Ciofani, G. 2018. Nanostructured Cyanoacrylates: Biomedical Applications. Smart nanoparticles for Biomedicine. Elsevier, United States of America. 65-81.
https://doi.org/10.1016/B978-0-12-814156-4.00005-7.
Obinu, A., Rassu, G., Corona, P., Maestri, M., Riva, F., Miele, D., Giunchedi, P., & Gavini, E. 2019. Poly (Ethyl 2-Cyanoacrylate) Nanoparticles (PECA-NPs) As Possible Agents in Tumor Treatment. Colloids and Surfaces B: Biointerfaces. 177: 520-528.
https://doi.org/10.1016/j.colsurfb.2019.02.036.
Tharanikkarasu, K., & Radhakrishnan, G. 1994. A Novel Polyurethane Macroinitiator for Free Radical Polymerization. European Polymer Journal. 30(12): 1351-1355.
https://doi.org/10.1016/0014-3057(94)90262-3.
Gursel, Y. H., Sarac, A., & Senkal, B. F. 2014. Synthesis of ABA Type Block Copolymers of Poly(Ethylene Glycol) and Poly(Dodecyl Vinyl Ether) and Its Using as Surfactant in Emulsion Polymerization. American Journal of Analytical Chemistr. 05(1): 39-44.
http://dx.doi.org/10.4236/ajac.2014.51006.
Church, J., Willner, M. R., Renfro, B. R., Chen, Y., Diaz, D., Lee, W. H., Dutcher, C. S., Lundin, J. G., & Paynter, D. M. 2021. Impact of Interfacial Tension and Critical Micelle Concentration on Bilgewater Oil Separation. Journal of Water Process Engineering. 39: 101684.
https://doi.org/10.1016/j.jwpe.2020.101684.
Zhang, G., Yang, N., Ni, Y., Shen, J., Zhao, W., & Huang, X. 2011. A H2O2 Electrochemical Biosensor Based on Biocompatible PNIPAM-G-P (NIPAM-Co-St) Nanoparticles and Multi-Walled Carbon Nanotubes Modified Glass Carbon Electrode. Sensors and Actuators, B: Chemical. 158(1): 130-137.
https://doi.org/10.1016/j.snb.2011.05.055.
Pavel, F. M. 2004. Microemulsion Polymerization. Journal of Dispersion Science and Technology. 25(1): 1-16.
https://doi.org/10.1081/DIS-120027662z.
Hermanson, K. D., & Kaler, E. W. 2004. Transition From Microemulsion to Emulsion Polymerization: Mechanism and Final Properties. Journal of Polymer Science Part A: Polymer Chemistry. 42(20): 5253-5261.
https://doi.org/10.1081/DIS-120027662.
Kobayashi, S., & Müllen Klaus. 2015. Microemulsion Polymerization. Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. 9.
https://doi.org/10.1007/978-3-642-29648-2_302.
Alvarado, A. G., Rabelero, M., Aguilar, J., Flores Mejia, J., & Moscoso Sánchez, F. J. 2020. Synthesis And Characterization of Butyl Acrylate-Co-Poly (Ethylene Glycol) Dimethacrylate Obtained by Microemulsion Polymerization. Designed Monomers and Polymers. 23(1): 40-49.
https://doi.org/10.1080%2F15685551.2020.1739506.
Widiyanti, P., Amali, M. A., & Aminatun. 2020. Poly(Ethylene Glycol)Dimethacrylate-Nanofibrillated Cellulose Bionanocomposites as Injectable Hydrogel for Therapy of Herniated Nucleus Pulposus Patients. Journal of Materials Research and Technology. 9(6): 12716-12722.
https://doi.org/10.1016/j.jmrt.2020.08.091.
Alves Batista, F., Brena Cunha Fontele, S., Beserra Santos, L. K., Alves Filgueiras, L., Quaresma Nascimento, S., de Castro e Sousa, J. M., Ramos Gonçalves, J. C., & Nogueira Mendes, A. 2020. Synthesis, Characterization of α-Terpineol-Loaded PMMA Nanoparticles as Proposed of Therapy for Melanoma. Materials Today Communications. 22: 100762.
https://doi.org/10.1016/j.mtcomm.2019.100762.
Khalaf Alshamari, A., & Mahmoud Sayed, W. 2016. Synthesis and Structure of Poly(Methyl Methacrylate) (PMMA) Nanoparticles in the Presence of Various Surfactants. Chemical Science Review and Letters. 5(17): 161-169. Retrieved from https://chesci.com/.
Imgharn, A., Ighnih, H., Hsini, A., Naciri, Y., Laabd, M., Kabli, H., Elamine, M., Lakhmiri, R., Souhail, B., & Albourine, A. 2021. Synthesis and Characterization of Polyaniline-based Biocomposites and Their Application for Effective Removal of Orange G Dye Using Adsorption in Dynamic Regime. Chemical Physics Letters. 778: 138811.
https://doi.org/10.1016/j.cplett.2021.138811.
Palaniappan, S., & John, A. 2008. Polyaniline Materials by Emulsion Polymerization Pathway. Progress in Polymer Science (Oxford). 33(7): 732-758.
https://doi.org/10.1016/j.progpolymsci.2008.02.002.
Razali, N. F., Mohammad, A. W., & Hilal, N. 2014. Effects of Polyaniline Nanoparticles in Polyethersulfone Ultrafiltration Membranes: Fouling Behaviours by Different Types of Foulant. Journal of Industrial and Engineering Chemistry. 20(5): 3134-3140.
https://doi.org/10.1016/j.jiec.2013.11.056.
Jang, J., Ha, J., & Kim, S. 2007. Fabrication of Polyaniline Nanoparticles Using Microemulsion Polymerization. Macromolecular Research. 15(2): 154-159.
http://dx.doi.org/10.1007/BF03218767.
Aliabadi, R. S., & Mahmoodi, N. O. 2018. Synthesis and Characterization of Polypyrrole, Polyaniline Nanoparticles and Their Nanocomposite for Removal of Azo Dyes; Sunset Yellow and Congo Red. Journal of Cleaner Production. 179: 235-245.
https://doi.org/10.1016/j.jclepro.2018.01.035.
Shin, H. J., Hwang, I. W., Hwang, Y. N., Kim, D., Han, S. H., Lee, J. S., & Cho, G. 2003. Comparative Investigation of Energy Relaxation Dynamics of Gold Nanoparticles and Gold-Polypyrrole Encapsulated Nanoparticles. Journal of Physical Chemistry B. 107(20): 4699-4704.
https://doi.org/10.1021/jp022055o.
Wang, H., Lin, T., & Kaynak, A. 2005. Polypyrrole Nanoparticles and Dye Absorption Properties. Synthetic Metals. 151(2): 136-140.
http://dx.doi.org/10.1016/j.synthmet.2005.03.020.
Krishna, A., Kumar, A., & Singh, R. K. 2012. Effect of Polyvinyl Alcohol on the Growth, Structure, Morphology, and Electrical Conductivity of Polypyrrole Nanoparticles Synthesized via Microemulsion Polymerization. ISRN Nanomaterials. 2012: 809063.
https://doi.org/10.5402/2012/809063z.
Capek, I. 2010. On Inverse Miniemulsion Polymerization of Conventional Water-Soluble Monomers. Advances in Colloid and Interface Science. 156(1-2): 35-61.
https://doi.org/10.1016/j.cis.2010.02.006.
Capek, I. 2004. Inverse Emulsion Polymerization of Acrylamide Initiated by Oil- and Water-soluble Initiators: Effect of Emulsifier Concentration. Polymer Journal. 36(10): 793-803.
https://doi.org/10.1295/polymj.36.793.
Ismail, Z., & Harun, N. A. 2019. Synthesis and Characterizations of Hydrophilic PHEMA Nanoparticles Via Inverse Miniemulsion Polymerization. Sains Malaysiana. 48(8): 1753-1759.
http://dx.doi.org/10.17576/jsm-2019-4808-22.
Zhong, J. X., Clegg, J. R., Ander, E. W., & Peppas, N. A. 2018. Tunable Poly(Methacrylic Acid-co-Acrylamide) Nanoparticles through Inverse Emulsion Polymerization. Journal of Biomedical Materials Research - Part A. 106(6): 1677-1686.
https://doi.org/10.1002/jbm.a.36371.
Sweatt, S. K., Gower, B. A., Chieh, A. Y., Liu, Y, Li, L. 2016. Tunable Poly(Methacrylic Acid-co-Acrylamide) Nanoparticles through Inverse Emulsion Polymerization. Physiology & Behavior. 176(1): 139-148.
https://doi.org/10.1002/jbm.a.36371.
Wald, S., Simon, J., Dietz, J. P., Wurm, F. R., & Landfester, K. 2017. Polyglycerol Surfmers and Surfactants for Direct and Inverse Miniemulsion. Macromolecular Bioscience. 17(10): 1-10.
https://doi.org/10.1002/mabi.201700070.
Capek, I. 2003. The Inverse Mini-Emulsion Polymerization of Acrylamide. Designed Monomers and Polymers. 6(4): 399-409.
https://doi.org/10.1163/156855503771816859.
Singh, L., Kruger, H. G., Maguire, G., Govender, T., & Parboosing, R. 2017. The Role of Nanotechnology in the Treatment of Viral Infections. Therapeutic Advances in Infectious Disease. 4(4): 105-131.
https://doi.org/10.1177/2049936117713593.
Riehemann, K., Schneider, S. W., Luger, T. A., Godin, B., Ferrari, M., & Fuchs, H. 2009. Nanomedicine-Challenge and Perspectives. Angewandte Chemie International Edition. 48(5): 872-897.
https://doi.org/10.1002/anie.200802585.
Kumar, S., Dilbaghi, N., Saharan, R., & Bhanjana, G. 2012. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. BioNanoScience. 2(4): 227-250.
https://doi.org/10.1007/s12668-012-0060-7.
Franco, P., & De Marco, I. 2020. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers. 12(5): 18-21.
https://doi.org/10.3390%2Fpolym12051114.
Kaneda, Y., Tsutsumi, Y., Yoshioka, Y., Kamada, H., Yamamoto, Y., Kodaira, H., Tsunoda, S., Okamoto, T., Mukai, Y., Shibata, H., Nakagawa, S., & Mayumi, T. 2004. The Use of PVP as A Polymeric Carrier to Improve the Plasma Half-Life of Drugs. Biomaterials. 25(16): 3259-3266.
https://doi.org/10.1016/j.biomaterials.2003.10.003.
Karol, M. D. 1990. Mean Residence Time and the Meaning of AUMC/AUC. Biopharmaceutics & Drug Disposition. 11(2): 179-181.
https://doi.org/10.1002/bdd.2510110210.
Kurakula, M., & Rao, G. 2020. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. Journal of Drug Delivery Science and Technology. 60: 102046.
https://doi.org/10.1016/j.jddst.2020.102046.
Liang, H., Friedman, J. M., & Nacharaju, P. 2016. Fabrication of Biodegradable PEG–PLA Nanospheres for Solubility, Stabilization, and Delivery of Curcumin. Artificial Cells. Nanomedicine, and Biotechnology. 45(2): 297-304.
https://doi.org/10.3109/21691401.2016.1146736.
Danafar, H., Rostamizadeh, K., Davaran, S., & Hamidi, M. 2013. PLA-PEG-PLA Copolymer-based Polymersomes as Nanocarriers for Delivery of Hydrophilic and Hydrophobic Drugs: Preparation and Evaluation with Atorvastatin and Lisinopril. Drug Development and Industrial Pharmacy. 40(10): 1411-1420.
https://doi.org/10.3109/03639045.2013.828223.
Singhvi, M. S., Zinjarde, S. S., & Gokhale, D. V. 2019. Polylactic Acid: Synthesis and Biomedical Applications. Journal of Applied Microbiology. 127(6): 1612-1626.
https://doi.org/10.1111/jam.14290.
Meunier, M., Goupil, A., & Lienard, P. 2017. Predicting Drug Loading in PLA-PEG Nanoparticles. International Journal of Pharmaceutics. 526(1-2): 157-166.
https://doi.org/10.1016/j.ijpharm.2017.04.043.
Ben-Shabat, S., Kumar, N., & Domb, A. J. 2006. PEG-PLA Block Copolymer as Potential Drug Carrier: Preparation and Characterization. Macromolecular Bioscience. 6(12): 1019-1025.
https://doi.org/10.1002/mabi.200600165.
Ashraf, S., Park, H.-K., Park, H., & Lee, S.-H. 2016. Snapshot of Phase Transition in Thermoresponsive Hydrogel PNIPAM: Role in Drug Delivery and Tissue Engineering. Macromolecular Research. 24(4): 297-304.
https://doi.org/10.1007/s13233-016-4052-2.
Murakami, K., Sugawara, R., & Nakamura, A. 2021. Synthesis of PNIPAM/Magnetite/Multiamine-Functionalized Mesoporous Silica Composite and Investigation of Temperature of Its Aggregation and Adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 624: 126833.
https://doi.org/10.1016/j.colsurfa.2021.126833.
Dhamecha, D., Le, D., Chakravarty, T., Perera, K., Dutta, A., & Menon, J. U. 2021. Fabrication of PNIPAM-based Thermoresponsive Hydrogel Microwell Arrays for Tumor Spheroid Formation. Materials Science and Engineering C. 125: 112100.
https://doi.org/10.1016/j.msec.2021.112100.
Tang, L., Wang, L., Yang, X., Feng, Y., Li, Y., & Feng, W. 2021. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Progress in Materials Science. 115: 100702.
https://doi.org/10.1016/j.pmatsci.2020.100702.
Shi, J., Yu, L., & Ding, J. 2021. PEG-Based Thermosensitive and Biodegradable Hydrogels. Acta Biomaterialia. 128: 42-59.
https://doi.org/10.1016/j.actbio.2021.04.009.
Grossen, P., Witzigmann, D., Sieber, S., & Huwyler, J. 2017. PEG-PCL-Based Nanomedicines: A Biodegradable Drug Delivery System and Its Application. Journal of Controlled Release. 26: 46-60.
https://doi.org/10.1016/j.jconrel.2017.05.028.
Sun, F., Nordli, H. R., Pukstad, B., Gamstedt, E. K., & Chinga-, G. 2017. Mechanical Characteristics of Nanocellulose-PEG Bionanocomposite Wound Dressings in Wet Conditions. Journal of the Mechanical Behavior of Biomedical Materials. 69: 377-384.
https://doi.org/10.1016/j.jmbbm.2017.01.049.
Reboredo, C., González-Navarro, C. J., Martínez-Oharriz, C., Martínez-López, A. L., & Irache, J. M. 2021. Preparation and Evaluation Of PEG-Coated Zein Nanoparticles for Oral Drug Delivery Purposes. International Journal of Pharmaceutics. 597: 120287.
https://doi.org/10.1016/j.ijpharm.2021.120287.
Bharadwaz, A., & Jayasuriya, A. C. 2020. Recent Trends in The Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Materials Science and Engineering C. 110: 110698.
https://doi.org/10.1016/j.msec.2020.110698.
Hu, Y., Wang, Y., Zeng, Z., Zhao, H., Ge, X., Wang, K., Wang, L., Xue, Q., Hu, Y., Wang, Y., Zeng, Z., & Zhao, H. 2018. PEGlated Graphene as Nanoadditive for Enhancing the Tribological Properties of Water-based. Carbon. 137: 41-48.
https://doi.org/10.1016/j.carbon.2018.05.009.
Bobde, Y., Patel, T., Paul, M., Biswas, S., & Ghosh, B. 2021. PEGylated N-(2-Hydroxypropyl) Methacrylamide Polymeric Micelles as Nanocarriers for the Delivery of Doxorubicin in Breast Cancer. Colloids and Surfaces B: Biointerfaces. 204: 111833.
https://doi.org/10.1016/j.colsurfb.2021.111833.
Carbone, E. J., Rajpura, K., Allen, B. N., Cheng, E., Ulery, B. D., Ph, D., Lo, K. W., & Ph, D. 2017. Osteotropic Nanoscale Drug Delivery Systems Based on Small Molecule Bone-Targeting Moieties. Nanomedicine: Nanotechnology, Biology, and Medicine. 13(1): 37-47.
https://doi.org/10.1016/j.nano.2016.08.015.
Buwalda, S., Nottelet, B., Bethry, A., Jan, R., Sijbrandi, N., & Coudane, J. 2019. Reversibly Core-Crosslinked PEG-P (HPMA) Micelles: Platinum Coordination Chemistry for Competitive-Ligand-Regulated Drug Delivery. Journal of Colloid and Interface Science. 535: 505-515.
https://doi.org/10.1016/j.jcis.2018.10.001.
Alves, P., Lc, G., Vorobii, M., Rodriguez-emmenegger, C., & Fj, M. 2020. The Potential Advantages of using a Poly(HPMA) Brush in Urinary Catheters: Effects on Biofilm Cells and Architecture. Colloids and Surfaces B: Biointerfaces. 191: 110976.
https://doi.org/10.1016/j.colsurfb.2020.110976.
Kopeček, J., & Kopečková, P. 2010. HPMA Copolymers: Origins, Early Developments, Present, and Future. Advanced Drug Delivery Reviews. 62(2): 122-149.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.