OPTICAL TRAPPING OF A SINGLE CHLOROFORM MICRODROPLET IN WATER

Authors

  • Muhamad Safuan Mat Yeng Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0003-0838-0776
  • Shahrul Kadri Ayop Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjong Malim, Perak, Malaysia
  • Keiji Sasaki Research Institute for Electronic Science, Hokkaido University, 0010020, Sapporo, Japan

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19303

Keywords:

Chloroform, microdroplet, optical tweezers

Abstract

The study aims to optically trap a single chloroform (CHCl3) microdroplet in water using optical tweezers. The study also investigates the effect of the preparation procedure by sonication on the chloroform microdroplet size and its stability in water. This microdroplet can potentially act as a carrier containing active molecules and for sensor applications in a fluid. The chloroform is sonicated in deionized water to produce a chloroform microdroplet solution. The size of the resultant microdroplets is observed under the optical microscope. The stability of the chloroform microdroplets in water was studied by monitoring the absorption spectra within a specified duration of time for 1 hour. A single chloroform microdroplet in the water is trapped using a 976 nm continuous laser beam with optical tweezers. The finding shows that the average size of the produced chloroform microdroplets does not vary significantly when the sonication time is less than 10 minutes. Furthermore, Chloroform microdroplets in water were stable within an hour of monitoring time. This study confirmed that a single chloroform microdroplet could be stably trapped using optical tweezers. It implies that the chloroform can form stable microdroplets in water and can be optically trapped under a focused laser.

References

T. A. Hanna et al. 2003. Synthesis, Structures, and Conformational Characteristics of Calixarene Monoanions and Dianions. J. Am. Chem. Soc. 125(20): 6228-6238. Doi: 10.1021/ja0289797.

T. Nishikubo, A. Kameyama, and H. Kudo. 2003. Novel High Performance Materials. Calixarene Derivatives Containing Protective Groups and Polymerizable Groups for Photolithography, and Calixarene Derivatives Containing Active Ester Groups for Thermal Curing of Epoxy Resins. Polym. J. 35(3): 213-229. Doi: 10.1295/polymj.35.213.

M. Wen et al. 2022. Optically Controlled Coalescence and Splitting of Femtoliter/picoliter Droplets for Microreactors. RSC Adv. 12(29): 18311-18320. Doi: 10.1039/d2ra02230c.

W. N. S. W. Aziz, S. K. Ayop, and S. Riyanto. 2015. The Potential of Optical Tweezer (OT) for Viscoelastivity Measurement of Nanocellulose Solution. J. Teknol. 74(8): 45-48. Doi: 10.11113/jt.v74.4722.

Y. Hamid, S. K. Ayop, W. N. S. Wan Aziz, and Y. Munajat. 2016. Spatial Distribution of an Optically Trapped Bead in Water. Bul. Opt. 2016. 2016(2): 29-36. Doi: 10.15011/jasma.33.330211.

M. S. M. Yeng, S. K. Ayop, and K. Sasaki. 2022. Optical Manipulation of a Liquid Crystal (LC) Microdroplet by Optical Force. Cryst. Res. Technol. 2200080. Doi: https://doi.org/10.1002/crat.202200080.

D. Goswami. 2018. Nobel Prize in Physics – 2018. Resonance, 23(12): 1333-1341. Doi: 10.1007/s12045-018-0744-6.

H. Xin, Y. Li, Y. C. Liu, Y. Zhang, Y. F. Xiao, and B. Li. 2020. Optical Forces: From Fundamental to Biological Applications. Advanced Materials. 32(37): 1-25. Doi: 10.1002/adma.202001994.

G. Pesce, P. H. Jones, O. M. Maragò, and G. Volpe. 2020. Optical Tweezers: Theory and Practice. 135(12). Springer Berlin Heidelberg. Doi: 10.1140/epjp/s13360-020-00843-5.

M. Safuan, M. Yeng, M. Farid, M. Yusof, and S. K. Ayop. 2019. Thickness Dependant Effective Radius of an Optical Trapping Toward Water-Air Interface. Int. J. Innov. Technol. Explor. Enginnering. 8(8): 91-93.

N. I. Mahadi, F. L. Supian, S. K. Ayop, and M. S. M. Yeng. 2022. Power Density Limit for Stable Optical Trapping of a Single Microcluster of Calix [ 4 ] arene in Water. Cent. Asian Caucasus. 23(1): 3000-3007.

C. S. Wu, P. Y. Hsieh, K. I. Yuyama, H. Masuhara, and T. Sugiyama. 2018. Pseudopolymorph Control of l -Phenylalanine Achieved by Laser Trapping. Cryst. Growth Des. 18(9): 5417-5425. Doi: 10.1021/acs.cgd.8b00796.

T. Sugiyama, K. I. Yuyama, and H. Masuhara. 2012. Laser Trapping Chemistry: From Polymer Assembly to Amino Acid Crystallization. Acc. Chem. Res. 45(11): 1946-1954. Doi: 10.1021/ar300161g.

J. Shechter et al. 2020. Direct Observation of Liquid Crystal Droplet Configurational Transitions using Optical Tweezers. Langmuir. 36(25): 7074-7082. Doi: 10.1021/acs.langmuir.9b03629.

E. A. Parmentier, P. C. Arroyo, S. Bibawi, K. Esat, and R. Signorell. 2020. Photochemistry of Single Optically Trapped Oleic Acid Droplets. J. Aerosol Sci. 151(August 2020): 0-10. Doi: https://doi.org/10.1016/j.jaerosci.2020.105660.

A. Miura, R. Nakajima, S. Abe, and N. Kitamura. 2020. Optical Trapping-Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. J. Phys. Chem. A. 124(43): 9035–9043. Doi: 10.1021/acs.jpca.0c06179.

Z. Gong, Y. Le Pan, G. Videen, and C. Wang. 2018. Optical Trapping and Manipulation of Single Particles in Air: Principles, Technical Details, and Applications. J. Quant. Spectrosc. Radiat. Transf. 214: 94-119. Doi: 10.1016/j.jqsrt.2018.04.027.

M. S. M. Yeng, S. K. Ayop, I. R. Mustapa, and K. Sasaki. 2022. Optical Stiffness of an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a Microdroplet in Water. Cent. Asian Caucasus. 23(1): 3008-3016.

M. Farid, M. Yusof, S. K. Ayop, F. L. Supian, and Y. Juahir. 2020. Optical Trapping of Organic Solvents in the Form of Microdroplets in Water. Chem. Phys. Lett. 749(January): 137407. Doi: 10.1016/j.cplett.2020.137407.

M. F. Mohamad Yusof and S. K. Ayop. 2020. The Trapping of a Single Chloroform Microdroplet in Water Using Optical Tweezers. Proceeding SPIE. 11522(June): 18. Doi: 10.1117/12.2573528.

D. Chong Bor Wei, S. K. Ayop, and F. Kremer. 2013. Resolvability Between Bare and DNA-Grafted Microsphere by Flow Resistance Measurement using Optical Tweezers. J. Sci. Math. Lett. UPSI. 1: 28-34. [Online]. Available: https://ejournal.upsi.edu.my/issuedetails/268.

J.-C. Bradley et al. 2010. Open Notebook Science Challenge: Solubilities of Organic Compounds in Organic Solvents. Nat. Preced. Doi: 10.1038/npre.2010.4243.1.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

OPTICAL TRAPPING OF A SINGLE CHLOROFORM MICRODROPLET IN WATER . (2023). Jurnal Teknologi, 85(3), 117-123. https://doi.org/10.11113/jurnalteknologi.v85.19303