CHARACTERIZATION OF REDUCED GRAPHENE OXIDE/ACTIVATED CARBON-BASED ELECTRODE CONTAINING MIXING CMC-SBR BINDER AND APPLICATION IN SUPERCAPACITOR
DOI:
https://doi.org/10.11113/jurnalteknologi.v84.19331Keywords:
rGO/AC, supercapacitor electrode, CMC-SBR binder, cyclic voltammetry, charge-dischargeAbstract
In this work, variation of mixing a combination of carboxymethylcellulose (CMC) and styrene-butadiene rubber (SBR) as both used as the binder in the electrode has been studied. The purpose of using CMC-SBR as the binder in the electrode is to achieve a high supercapacitor performance. The electrode preparation has been carried out by mixing the reduced graphene oxide (rGO) and activated carbon (AC) in a blender. The binder preparation started by dissolving the CMC and SBR in the deionized water using a clean glass container. Then, rGO/AC has been stirred with the CMC-SBR for 60 minutes until a homogenous slurry formed. All electrodes have been characterized with Raman spectroscopy. The electrochemical tests such as cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) for all electrode compositions were performed. The electrode with 4:6 (in weight percentage) of CMC-SBR shows the highest specific capacitance (Csp) of 59.65 F g-1 (CV scan rate of 1 mV s-1) and 12.82 F g-1 from GCD test. This confirmed that the electrode containing 4 wt.% of CMC and 6 wt.% of SBR resulting in the best composition, which is reliable and practical for the supercapacitor application.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.