INVESTIGATING THE COMPARISON OF SHIP RESISTANCE COMPONENTS BETWEEN U AND V-SHAPED HULLS

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19382

Keywords:

Hull shape, U hull, V hull, ship resistance, Formdata

Abstract

The selection of a hull design with minimal drag is an important effort to reduce emission levels on ships. Two different hull shapes, U and V hulls, have unique properties that affect their drag production, which has been studied extensively in the past. This study aims to re-examine the differences between the two hull types by conducting a simple analysis of drag prediction results using empirical and numerical slender body methods. Both hull models in this study have the same size and volume. The results indicate that the U hull has a higher frictional resistance ( ) than the V hull due to its wider wetted surface area ( ). Additionally, the viscous pressure resistance ( ) and form factor coefficient ( ) of the U hull are also higher than those of the V hull. However, for Froude numbers (Fr) above 0.245, the U hull has lower wave resistance ( ) than the V hull, whereas for Fr below 0.245, the U hull has higher . Overall, the U hull produces a higher total resistance ( ) than the V hull at low speeds, but a lower  at high speeds. Therefore, the choice of hull shape for minimizing a ship's resistance is influenced by the desired speed of service. If Fr is low, below 0.24, a V-shaped hull is more suitable. However, if Fr is higher than 0.24, a U-shaped hull is more appropriate.

References

Smith, T.W.P., Jalkanen, J.P., Anderson, B.A., Corbett, J.J., Faber, J., Hanayama, S., O’Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D.S., Ng, S., Agrawal, A., Winebrake, J.J., Hoen, M., Chesworth, S., Pandey, A. 2014. Third IMO GHG Study 2014. International Maritime Organization (IMO) London, UK. https://doi.org/10.1017/CBO9781107415324.004.

Buhaug, Ø., Corbett, J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D., Lee, D., Lindstad, H., Markowska, A., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J., Wu, W., Yoshida, K. 2009. Second IMO GHG Study2009. International Maritime Organization (IMO). https://doi.org/10.1163/187529988X00184.

Wang, H., Lutsey, N. 2014. Long-term Potential to Reduce Emissions from International Shipping by Adoption of Best Energy-efficiency Practices. Transportation Research Record 2426. 1-10. https://doi.org/10.3141/2426-01.

Molland, A. F., Turnock, S. R., Hudson, D. A., Utama, I. K. A. P. 2014. Reducing Ship Emissions: A Review of Potential Practical Improvements in the Propulsive Efficiency of Future Ships. Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering. 156: 175-188. https://doi.org/10.3940/rina.ijme.2014.a2.289.

Zis, T. P. V., Psaraftis, H. N., Ding, L. 2020. Ship Weather Routing: A Taxonomy and Survey. Ocean Engineering. 213: 107697. https://doi.org/10.1016/j.oceaneng.2020.107697.

Taskar, B., Andersen, P. 2020. Benefit of Speed Reduction for Ships in Different Weather Conditions. Transportation Research Part D: Transport and Environment. 85: 102337. https://doi.org/10.1016/j.trd.2020.102337.

Leaper, R. 2019. The Role of Slower Vessel Speeds in Reducing Greenhouse Gas Emissions, Underwater Noise and Collision Risk to Whales. Frontiers in Marine Science. 6. https://doi.org/10.3389/fmars.2019.00505.

Abar, I. A. C., Utama, I. K. A. P. 2019. Effect of the Incline Angle of Propeller Boss Cap Fins (PBCF) on Ship Propeller Performance. International Journal of Technology. 10: 1056. https://doi.org/10.14716/ijtech.v10i5.2256.

Arifin, M. D., Felayati, M. F., Muhammad, A. H. 2022. Flow Separation Evaluation on Tubercle Ship Propeller. CFD Letters. 14: 43-50. https://doi.org/10.37934/cfdl.14.4.4350.

Eberechukwu Onwuegbuchunam, D., Chimobi Ogbenna, F., Charles Ezeanya, N., Okechukwu Okeke, K. 2019. Ship Hull Form Optimization: A Computational Fluid Dynamics (CFD) Approach. International Journal of Transportation Engineering and Technology. 5: 43. https://doi.org/10.11648/j.ijtet.20190503.11.

Kleinsorge, E., Lindner, H., Wagner, J., Bronsart, R. 2016. Ship Hull form Optimization using Scenario Methods. PRADS 2016 - Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures.

Sugianto, E., Chen, J.-H., Permadi, N. V. A. 2022. Effect of Monohull Type and Catamaran Hull Type on Ocean Waste Collection Behavior Using OpenFOAM. Water. 14: 2623. https://doi.org/10.3390/w14172623.

Sugianto, E., Winarno, A., Indriyani, R., Horng Chen, J. 2021b. Hull Number Effect in Ship Using Conveyor on Ocean Waste Collection. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan. 18: 128-139. https://doi.org/10.14710/kapal.v18i3.40744.

Sugianto, E., Horng-Chen, J., Purba, N. P. 2021a. Numerical Investigation of Conveyor Wing Shape Type Effect on Ocean Waste Collection Behavior. E3S Web of Conferences. 324: 01005. https://doi.org/10.1051/e3sconf/202132401005.

Farkas, A., Degiuli, N., Martić, I. 2021a. Assessment of the Effect of Biofilm on the Ship Hydrodynamic Performance by Performance Prediction Method. International Journal of Naval Architecture and Ocean Engineering. 13: 102-114. https://doi.org/10.1016/j.ijnaoe.2020.12.005.

Degiuli, N., Farkas, A., Martić, I., Grlj, C. G. 2023. Optimization of Maintenance Schedule for Containerships Sailing in the Adriatic Sea. Journal of Marine Science and Engineering. 11: 201. https://doi.org/10.3390/jmse11010201.

Hakim, M. L., Suastika, I. K., Utama, I. K. A. P. 2023. A Practical Empirical Formula for the Calculation of Ship Added Friction-resistance Due to (bio)fouling. Ocean Engineering. 271: 113744. https://doi.org/10.1016/j.oceaneng.2023.113744.

Hakim, M. L., Nugroho, B., Suastika, I. K., Utama, I. K. A. P. 2021. Alternative Empirical Formula for Predicting the Frictional Drag Penalty due to Fouling on the Ship Hull using the Design of Experiments (DOE) Method. International Journal of Technology. 12: 829. https://doi.org/10.14716/ijtech.v12i4.4692.

Schultz, M. P., Bendick, J. A., Holm, E. R., Hertel, W. M. 2011. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling. 27: 87-98. https://doi.org/10.1080/08927014.2010.542809.

Hakim, M. L., Nugroho, B., Putranto, T., Suastika, K., Utama, I. K. A. P. 2018. Assessment of Drag Penalty Resulting from The Roughness of Freshly Cleaned and Painted Ship-Hull Using Computational FLuid Dynamics. 11st International Conference on Marine Technology MARTEC 2018. Kuala Lumpur, Malaysia.

Undap, R., Fadillah, A. 2021. The Effect of Trim on Tanker, Container and Bulk Carrier Ship Toward the Reduction of Ship’s Exhaust Gas Emission. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan. 18: 58-68. https://doi.org/10.14710/kapal.v18i2.33877.

Ismail, I. N., Manik, P., Indiaryanto, M. 2020. Effect of the Addition of Hydrofoil on Lift Force and Resistance in 60 M High-Speed Vessel. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan. 17: 95-106. https://doi.org/10.14710/kapal.v17i3.28772.

Chrismianto, D., Tuswan, Manik, P. 2018. Analysis of Resistance and Effective Wake Friction Due to Addition of Stern Tunnels on Passenger Ship Using Cfd. IOP Conference Series: Earth and Environmental Science. 135: 012008. https://doi.org/10.1088/1755-1315/135/1/012008.

Samuel, S., Mursid, O., Yulianti, S., Kiryanto, Iqbal, M. 2022. Evaluation of Interceptor Design to Reduce Drag on Planing Hull. Brodogradnja. 73: 93-110. https://doi.org/10.21278/brod73306.

Adietya, B. A., Utama, I. K. A. P., Aryawan, W. D., Sutiyo, S. 2022. CFD Analysis into the Effect of using Propeller Boss Cap Fins (PBCF) on Open and Ducted Propellers, Case Study with Propeller B-Series and Kaplan-Series. CFD Letters. 14: 32-42. https://doi.org/10.37934/cfdl.14.4.3242.

Gaggero, S., Martinelli, M. 2022. Pre- and Post-swirl Fins Design for Improved Propulsive Performances. Ship Technology Research. 69: 31-49. https://doi.org/10.1080/09377255.2021.1934362.

Suwasono, B., Putra, I. K. A. S., Kristiyono, T. A., Azhar, A. 2021. Adhesive Coating Value based on the Main Ingredient of Ship Paint. Brodogradnja. https://doi.org/10.21278/brod72202.

Hakim, M. L., Nugroho, B., Nurrohman, M. N., Suastika, I. K., Utama, I. K. A. P. 2019. Investigation of Fuel Consumption on an Operating Ship due to Biofouling Growth and Quality of Anti-fouling coating. IOP Conference Series: Earth and Environmental Science. 339: 012037. https://doi.org/10.1088/1755-1315/339/1/012037.

Farkas, A., Degiuli, N., Martić, I., Vujanović, M. 2021b. Greenhouse Gas Emissions Reduction Potential by using Antifouling Coatings in a Maritime Transport Industry. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2021.126428.

Schultz, M. P. 2007. Effects of Coating Roughness and Biofouling on Ship Resistance and Powering. Biofouling. 23: 331-341. https://doi.org/10.1080/08927010701461974.

Atencio, B. N., Chernoray, V. 2019. A Resolved RANS CFD Approach for Drag Characterization of Antifouling Paints. Ocean Engineering. 171: 519-532. https://doi.org/10.1016/j.oceaneng.2018.11.022.

Utama, I. K. A. P., Nugroho, B., Yusuf, M., Prasetyo, F. A., Hakim, M. L., Suastika, I. K., Ganapathisubramani, B., Hutchins, N., Monty, J. P. 2021. The Effect of Cleaning and Repainting on the Ship Drag Penalty. Biofouling. 37: 372-386. https://doi.org/10.1080/08927014.2021.1914599.

Hakim, M. L., Nugroho, B., Chin, R. C., Putranto, T., Suastika, I. K., Pria Utama, I. K. A. 2020. Drag Penalty Causing from the Roughness of Recently Cleaned and Painted Ship Hull Using RANS CFD. CFD Letters. 12: 78-88. https://doi.org/10.37934/cfdl.12.3.7888.

Hakim, M. L., Maqbulyani, N., Nugroho, B., Suastika, I. K., Utama, I. K. A. P. 2021. Wind-Tunnel Experiments and CFD Simulations to Study the Increase in Ship Resistance Components due to Roughness. Journal Of Sustainability Science And Management. 16: 144-163. https://doi.org/10.46754/jssm.2021.04.012.

Guldhammer, H. E. 1963. FORMDATA II, Hydrostatic Data for Ship Forms of Full and Finer Type Hydrostatic Data, Trimmed Conditions. International Shipbuilding Progress. 10: 476-509. https://doi.org/10.3233/ISP-1963-1011202.

Schneekluth, H., Bertram, V.,1998. Ship Design for Efficiency and Economy. 2nd ed. Butterworth-Heinemann, Oxford.

Choi, H. J. 2015. Hull-form Optimization of a Container Ship based on Bell-shaped Modification Function. International Journal of Naval Architecture and Ocean Engineering. 7: 478-489. https://doi.org/10.1515/ijnaoe-2015-0034.

Jung, Y.-W., Kim, Y. 2019. Hull Form Optimization in the Conceptual Design Stage Considering Operational Efficiency in Waves. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 233: 745-759. https://doi.org/10.1177/1475090218781115.

Chrismianto, D., Manik, P., Rindo, G., Firdhaus, A. 2019. Design Comparative of PVC Fishing Boat with Variation of Ship Hullform and Fishing Gear Type. International Journal of Mechanical Engineering and Technology. 10: 1934-1941.

Fitriadhy, A., Lim, S. Y., Maimun, A. 2020. Prediction of an Optimum Total Resistance Coefficient on Catamaran using Design of Experiment (DOE) Incorporated with CFD Approach. EPI International Journal of Engineering. 3: 74-83. https://doi.org/10.25042/epi-ije.022020.11.

Guldhammer, H. E. 1962. FORMDATA - Some Systematically Varied Ship Forms and Their Hydrostatic Data. Copenhagen.

Hakim, M. L., Yulianto, T. 2015. Stresses Comparative Analysis Between Hull-V and Hull-U due to Slamming Pressure using Finite Element Method. SENTA: Seminar Nasional Teori Dan Aplikasi Teknologi Kelautan. Surabaya, Indonesia. X39-46.

Baidowi, A., Amiadji, Musriyadi, T. B., Aried, I. S., Ricinsi, F. P. 2022. Resistance Comparison of Flat Plate and Conventional Streamline Vessel. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/972/1/012054.

Molland, A. F., Turnock, S. R., Hudson, D. A. 2017. Ship Resistance and Propulsion. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316494196.

ITTC. 2014. 1978-Performance Prediction Method. ITTC – Recommended Procedures and Guidelines 7.5-02-03-, Propulsion Committee of 27th ITTC.

Holtrop, J. 1984. Statistical Re-Analysis of Resistance and Propulsion Data. International Shipbuilding Progress.

Michell, J. H. 1898. XI. The Wave-resistance of a Ship. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45: 106-123. https://doi.org/10.1080/14786449808621111.

Insel, M., Molland, A. F. 1991. An Investigation into the Resistance Components of High Speed Displacement Catamarans. Transactions. Royal Institution of Naval Architects. 133.

Couser, P. R., Wellicome, J. F., Molland, A. F. 1998. An Improved Method for the Theoretical Prediction of the Wave Resistance of Transom-stern Hulls using a Slender Body Approach. International Shipbuilding Progress. 45: 331-349.

Insel, M. 1990. An Improved Method for the Theoretical Prediction of the Wave Resistance of Transom-Stern Hulls using a Slender Body Approach. Ph.D. Thesis, Department of Ship Science University of Southampton, U.K.

Eggers, K. 1955. Resistance Components of Two-body Ships. Jahrbuch der Schiffbautechnischen Gesellschaft. 49.

Jamaluddin, A., Utama, I. K. A. P., Hamdani, M. A. 2010. Kajian Interferensi Koefisien Hambatan pada Lambung Katamaran melalui Komputasi ’Slender Body Method. Kapal Jurnal Ilmu Pengetahuan dan Teknologi Kelautan. 7.

Gourlay, T. 2008. Slender-body Methods for Predicting Ship Squat. Ocean Engineering. 35: 191-200. https://doi.org/10.1016/j.oceaneng.2007.09.001.

Tuck, E. O. 1966. Shallow-water Flows Past Slender Bodies. Journal of Fluid Mechanics. 26: 81. https://doi.org/10.1017/S0022112066001101.

Bentley Systems. 2013. User Manual for Maxsurf Modeler.

Bašić, J., Blagojević, B., Andrun, M. 2020. Improved Estimation of Ship Wave-making Resistance. Ocean Engineering. 200: 107079. https://doi.org/10.1016/j.oceaneng.2020.107079.

Toda, Y., Stern, F., Tanaka, I., Patel, V. C. 1990. Mean-Flow Measurements in the Boundary Layer and Wake of a Series 60 CB = 0.6 Model Ship with and without Propeller. Journal of Ship Research. 34: 225-252. https://doi.org/10.5957/jsr.1990.34.4.225.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

INVESTIGATING THE COMPARISON OF SHIP RESISTANCE COMPONENTS BETWEEN U AND V-SHAPED HULLS. (2023). Jurnal Teknologi (Sciences & Engineering), 85(3), 153-164. https://doi.org/10.11113/jurnalteknologi.v85.19382