THE USE OF PVDF-BASED MEMBRANE FOR TREATING INDUSTRIAL WASTEWATER IN THE PERSPECTIVE OF FABRICATION TECHNIQUE AND FOULING MITIGATION VIA ADDITIVE BLENDING AND SURFACE COATING

Authors

  • Sri Martini Chemical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Palembang, 13 Ulu, Palembang 30263, Indonesia
  • Mardwita Mardwita Chemical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Palembang, 13 Ulu, Palembang 30263, Indonesia https://orcid.org/0000-0002-6052-9139
  • Sharmeen Afroze Department of Chemical Engineering and Petroleum Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
  • Eka Sri Yusmartini Chemical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Palembang, 13 Ulu, Palembang 30263, Indonesia
  • Dian Kharismadewi Chemical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Palembang, 13 Ulu, Palembang 30263, Indonesia https://orcid.org/0000-0002-7888-151X

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.19389

Keywords:

PVDF-based membrane, additive blending, surface coating, flux, fouling

Abstract

This review particularly discusses current development of PVDF (polyvinylidene fluoride)-based membrane technology for wastewater purification in terms of the potentiality, various fabrication techniques and specific fouling mitigation. Firstly, membrane technology for treating industrial wastewater and other polluted water is presented properly. In this section, essential aspects in membrane technology such as membrane usage in wastewater treatment field, fouling phenomena, fouling characteristics, and its mechanism would be explained. The second part then includes PVDF polymer, the utilization of conventional and green solvents used in membrane fabrication process as well as prominent methods available for fabricating PVDF-based membranes. Ultimately, the last section critically covers fouling mitigation efforts covering two prominent strategies namely additive blending and surface coating using novel substances as reported in current literature. Although some research related to the preparation of membrane materials has existed in the literature, there are still several challenging issues that need to be critically discussed deeper for establishing a reliable PVDF-based membrane and modifying the membrane for obtaining better properties of permeate flux, selectivity and anti-fouling leading to better membrane performance for purifying industrial wastewater containing high concentration of recalcitrant organic and inorganic pollutants. Overall, this review will considerately contribute to understand membrane fabrication and current surface modification as part of possible dependable loopholes for reducing fouling rate especially on PVDF-based membranes, and it will be a strong foundation for future research regarding the fabrication of polymeric membrane derived from PVDF having better durability and antifouling property.

References

Martini, S., Ang, H. M. and Znad, H. 2017. Integrated Ultrafiltration Membrane Unit for Efficient Petroleum Refinery Effluent Treatment. Clean Soil Air Water. 45: 1-9.

Doi: https://doi.org/10.1002/clen.201600342.

Barambu, N. U., Bilad, M. R., Bustam, M. A., Kurnia, K. A., Othman, M. H. D. and Nordin, N. A. H. M. 2020. Development of Membrane Material for Oily Wastewater Treatment: A Review. Ain Shams Engineering Journal. 12(2): 1361-1374.

Doi: https://doi.org/10.1016/j.asej.2020.08.027.

Methneni, N., Morales González, J. A., Jaziri, A., Ben Mansour, H. and Fernandez-Serrano, M. 2021. Persistent Organic and Inorganic Pollutants in the Effluents from the Textile Dyeing Industries: Ecotoxicology Appraisal Via a Battery of Biotests. Environmental Research. 196: 110956.

Doi: https://doi.org/10.1016/j.envres.2021.110956.

Mishra, S., Cheng, L. and Maiti, A. 2021. The Utilization of Agro-Biomass/Byproducts for Effective Bio-Removal of Dyes from Dyeing Wastewater: A Comprehensive Review. Journal of Environmental Chemical Engineering. 9: 104901.

Doi: https://doi.org/10.1016/j.jece.2020.104901.

Putatunda, S., Bhattacharya, S., Sen, D. and Bhattacharjee, C. 2019. A Review on the Application of Different Treatment Processes for Emulsified Oily Wastewater. International Journal of Environmental Science and Technology. 16: 2525-2536.

Doi: https://doi.org/10.1007/s13762-018-2055-6.

Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M. and Zheng, H. 2021. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Science of the Total Environment. 765: 142795.

Doi: https://doi.org/10.1016/j.scitotenv.2020.142795.

Martini, S. and Roni, K. A. 2021. The Existing Technology and the Application of Digital Artificial Intelligent in the Wastewater Treatment Area: A Review Paper. Journal of Physics: Conference Series. IOP Publishing. 1858: 012013.

Doi: https://doi.org/10.1088/1742-6596/1858/1/012013

Martini, S. and Setiawati, M. 2020. Technology for Treating Oily Wastewater Derived from Various Industries: A Review Paper. CHEMICA: Jurnal Teknik Kimia. 7(2): 106-116.

Doi: https://doi.org/10.26555/chemica.v7i2.18541.

Xu, H., Yang, B., Liu, Y., Li, F., Song, X., Cao, X. and Sand, W. 2021. Evolution of Microbial Populations and Impacts of Microbial Activity in The Anaerobic-Oxic-Settling-Anaerobic Process for Simultaneous Sludge Reduction and Dyeing Wastewater Treatment. Journal of Cleaner Production. 282: 124403.

Doi: https://doi.org/10.1016/j.jclepro.2020.124403.

Agarwal, A., Upadhyay, U., Sreedhar, I., Singh, S. A. and Patel, C. M. 2020. A Review on Valorization of Biomass in Heavy Metal Removal from Wastewater. Journal of Water Process Engineering. 38: 101602.

Doi: https://doi.org/10.1016/j.jwpe.2020.101602.

Martini, S., Afroze, S. and Roni. K. A. 2020. Modified Eucalyptus Bark as a Sorbent for Simultaneous Removal of COD, Oil, and Cr (III) from Industrial Wastewater. Alexandria Engineering Journal. 59: 1637-1648.

Doi: https://doi.org/10.1016/j.aej.2020.04.010.

Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Abdel Menem, N. M., Raynaud, P., Moustafa, Y. M., Elsayed, M. A. and Nada, A. A. 2021. Efficiently Activated Carbons from Corn Cob for Methylene Blue Adsorption. Applied Surface Science Advances. 3: 100037.

Doi: https://doi.org/10.1016/j.apsadv.2020.100037.

Yang, C., Xu, W., Nan, Y., Wang, Y., Hu, Y., Gao, C. and Chen, X. 2020. Fabrication and Characterization of a High Performance Polyimide Ultrafiltration Membrane for Dye Removal. Journal of Colloid and Interface Science. 562: 589-597.

Doi: https://doi.org/10.1016/j.jcis.2019.11.075.

Liu, X., Jiang, B., Yin, X., Ma, H. and Hsiao, B. S. 2020. Highly Permeable Nanofibrous Composite Microfiltration Membranes for Removal of Nanoparticles and Heavy Metal Ions. Separation and Purification Technology. 233: 115976.

Doi: https://doi.org/10.1016/j.seppur.2019.115976.

Yadav, P., Ismail, N., Essalhi, M., Tysklind, M., Athanassiadis, D. and Tavajohi, N. 2021. Assessment of the Environmental Impact of Polymeric Membrane Production. Journal of Membrane Science. 622: 118987.

Doi: https://doi.org/10.1016/j.memsci.2020.118987.

Martini, S. and Ang, H. M. 2019. Hybrid TiO2/UV/PVDF Ultrafiltration Membrane for Raw Canola Oil Wastewater Treatment. Desalination and Water Treatment. 148: 51-59.

Doi: https://doi.org/10.5004/dwt.2019.23771.

Asif, M. B., Ansari, A. J., Chen, S. S., Nghiem, L. D., Price, W. E. and Hai, F. I. 2019. Understanding the Mechanisms of Trace Organic Contaminant Removal by High Retention Membrane Bioreactors: A Critical Review. Environmental Science and Pollution Research. 26: 34085-34100.

Doi: https://doi.org/10.1007/s11356-018-3256-8.

Samaei, S. Gato-Trinidad, M. S. and Altaee, A. 2018. The Application of Pressure-Driven Ceramic Membrane Technology for the Treatment of Industrial Wastewaters-A Review. Separation and Purification Technology. 200: 198-220.

Doi: https://doi.org/10.1016/j.seppur.2018.02.041.

Dong, X., Lu, D., Harris, T. A. L. and Escobar, I. C. 2021. Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development. Membranes. 11: 309.

Doi: https://doi.org/10.3390/membranes11050309.

Tan, Z., Chen, S., Peng, X., Zhang, L. and Gao, C. 2018. Polyamide Membranes with Nanoscale Turing Structures for Water Purification. Science. 360: 518-521.

Doi: https://doi.org/10.1126/science.aar6308.

Al Aani, S., Mustafa, T. N. and Hilal, N. 2020. Ultrafiltration Membranes for Wastewater and Water Process Engineering: A Comprehensive Statistical Review over the Past Decade. Journal of Water Process Engineering. 35: 101241.

Doi: https://doi.org/10.1016/j.jwpe.2020.101241.

Alkhatib, A., Ayari, M. A. and Hawari, A. H. 2021. Fouling Mitigation Strategies for Different Foulants in Membrane Distillation. Chemical Engineering and Processing-Process Intensification. 167: 108517.

Doi: https://doi.org/10.1016/j.cep.2021.108517.

Martini, S. and Yuliwati, E. 2020. Membrane Development and Its Hybrid Application for Oily Wastewater Treatment: A Review. Journal of Applied Membrane Science & Technology. 25(1): 57-71.

Doi: https://doi.org/10.11113/amst.v25n1.209.

Choudhury, M. R., Anwar, N., Jassby, D. and Rahaman, M. S. 2019. Fouling and Wetting in the Membrane Distillation Driven Wastewater Reclamation Process-A Review. Advances in Colloid and Interface Science. 269: 370-399.

Doi: https://doi.org/10.1016/j.cis.2019.04.008.

Zhang, J. Lv, G., Zhang, H., Zhao, C. and Yang, F. 2018. Improvement of Antifouling Performances for Modified PVDF Ultrafiltration Membrane with Hydrophilic Cellulose Nanocrystal. Applied Surface Science. 440: 1091-1100.

Doi: https://doi.org/10.1016/j.apsusc.2018.01.256.

Wang, P., Teoh, M. M. and Chung, T. S. 2011. Morphological Architecture of Dual-Layer Hollow Fiber for Membrane Distillation with Higher Desalination Performance. Water Research. 45: 5489-5500.

Doi: https://doi.org/10.1016/j.watres.2011.08.012.

Hsu, S., Cheng, K. and Chiou, J. S. 2002. Seawater Desalination by Direct Contact Membrane Distillation. Desalination. 143: 279-287.

Doi: https://doi.org/10.1016/S0011-9164(02)00266-7.

He, Z., Lan, X., Hu, Q., Li, H., Li, L. and Mao, J. 2021. Antifouling Strategies Based on Super-Phobic Polymer Materials. Progress in Organic Coatings. 157: 106285.

Doi: https://doi.org/10.1016/j.porgcoat.2021.106285.

Maan, A. M., Hofman, A. H., de Vos, W. M. and Kamperman, M. 2020. Recent Developments and Practical Feasibility of Polymer‐Based Antifouling Coatings. Advanced Functional Materials. 30: 2000936.

Doi: https://doi.org/10.1002/adfm.202000936.

Goh, P., Lau, W., Othman, M. and Ismail, A. 2018. Membrane Fouling in Desalination and Its Mitigation Strategies. Desalination. 425: 130-155.

Doi: https://doi.org/10.1016/j.desal.2017.10.018.

Huang, S., Ras, R. H. and Tian, X. 2018. Antifouling Membranes for Oily Wastewater Treatment: Interplay Between Wetting and Membrane Fouling. Current Opinion in Colloid & Interface Science. 36: 90-109.

Doi: https://doi.org/10.1016/j.cocis.2018.02.002.

Khan, I. A., Lee, Y. S. and Kim, J. O. 2020. A Comparison of Variations in Blocking Mechanisms of Membrane-Fouling Models for Estimating Flux During Water Treatment. Chemosphere. 259: 127328.

Doi: https://doi.org/10.1016/j.chemosphere.2020.127328.

Guo, Y., Li, T. -y., Xiao, K., Wang, X. –m. and Xie, Y. F. 2020. Key Foulants and Their Interactive Effect in Organic Fouling of Nanofiltration Membranes. Journal of Membrane Science. 610: 118252.

Doi: https://doi.org/10.1016/j.memsci.2020.118252.

Ying Shi, C., Hui Ting, L. L. and Boon Seng, O. 2020. Membrane Distillation for Water Recovery and Its Fouling Phenomena. Journal of Membrane Science and Research. 6: 107-124.

Doi: 10.22079/JMSR.2019.111501.1277.

Ricceri, F., Giagnorio, M., Zodrow,K. R. and Tiraferri, A. 2021. Organic Fouling in Forward Osmosis: Governing Factors and a Direct Comparison with Membrane Filtration Driven by Hydraulic Pressure. Journal of Membrane Science. 619: 118759.

Doi: https://doi.org/10.1016/j.memsci.2020.118759.

Goh, S., Zhang, J., Liu, Y. and Fane, A. G. 2013. Fouling and Wetting in Membrane Distillation (MD) and MD-Bioreactor (MDBR) for Wastewater Reclamation. Desalination. 323: 39-47.

Doi: https://doi.org/10.1016/j.desal.2012.12.001.

Flemming, H. C., Schaule, G., McDonogh, R. and Ridgway, H. F. 1994. Effects and Extent of Biofilm Accumulation in Membrane Systems. Biofouling and Biocorrosion in Industrial Water Systems. 63-89.

Doi: 10.1007/978-3-642-76543-8_4.

Tang, C. Y., Chong, T. and Fane, A. G. 2011. Colloidal Interactions and Fouling of NF and RO Membranes: A Review. Advances in Colloid and Interface Science. 164: 126-143.

Doi: https://doi.org/10.1016/j.cis.2010.10.007.

Rajeevan, S., John, S. and George, S. C. 2021. Polyvinylidene Fluoride: A Multifunctional Polymer in Supercapacitor Applications. Journal of Power Sources. 504: 230037.

Doi: https://doi.org/10.1016/j.jpowsour.2021.230037.

Xie, Q., Huang, X., Zhang, Y., Wu, S. and Zhao, P. 2018. High Performance Aqueous Symmetric Supercapacitors Based on Advanced Carbon Electrodes and Hydrophilic Poly (Vinylidene Fluoride) Porous Separator. Applied Surface Science. 443: 412-420.

Doi: https://doi.org/10.1016/j.apsusc.2018.02.274.

Mertens, M., Van Dyck, T., Van Goethem, C., Gebreyohannes, A. Y. and Vankelecom, I. F. J. 2018. Development of A Polyvinylidene Difluoride Membrane for Nanofiltration. Journal of Membrane Science. 557: 24-29.

Doi: https://doi.org/10.1016/j.memsci.2018.04.020.

Ilyas, A., Mertens, M., Oyaert, S. and Vankelecom, I. F. J. 2021. Anti-Fouling Behavior of Micro-Patterned PVDF Membranes Prepared Via Spray-Assisted Phase Inversion: Influence of Pattern Shapes and Flow Configuration. Separation and Purification Technology. 259: 118041.

Doi: https://doi.org/10.1016/j.seppur.2020.118041.

Zhao, J., Chong, J. Y., Shi, L. and Wang, R. 2021. PTFE-Assisted Immobilization of Pluronic F127 In PVDF Hollow Fiber Membranes with Enhanced Hydrophilicity Through Nonsolvent-Thermally Induced Phase Separation Method. Journal of Membrane Science. 620: 118914.

Doi: https://doi.org/10.1016/j.memsci.2020.118914.

Rasool, M. A., Pescarmona, P. P. and Vankelecom, I. F. 2019. Applicability of Organic Carbonates as Green Solvents for Membrane Preparation. ACS Sustainable Chemistry & Engineering. 7: 13774-13785.

Doi: https://doi.org/10.1021/acssuschemeng.9b01507.

Wang, J. –h., Zhang, Y. –h., Xu, Y. –y., Zhu, B. –k. and Xu, H. 2014. Fabrication of Hydrophilic and Sponge-Like PVDF/Brush-Like Copolymer Blend Membranes using Triethylphosphate as Solvent. Chinese Journal of Polymer Science. 32: 143-150.

Doi: https://doi.org/10.1007/s10118-014-1371-7.

Tao, M. –m., Liu, F., Ma, B. –r. and Xue, L. -x. 2013. Effect of Solvent Power on PVDF Membrane Polymorphism during Phase Inversion. Desalination. 316: 137-145.

Doi: https://doi.org/10.1016/j.desal.2013.02.005.

Rasool, M. A. and Vankelecom, I. 2019. Use of Valerolactone and Glycerol Derivatives as Bio-Based Renewable Solvents for Membrane Preparation. Green Chemistry. 21: 1054-1064.

Doi: https://doi.org/10.1039/C8GC03652G.

Lau, W. J. and Ismail, A. F. 2011. Progress in Interfacial Polymerization Technique on Composite Membrane Preparation. Proceedings of the 2nd International Conference on Environmental Engineering and Applications, IPCBEE, Press, Singapore. 17: 173-177.

Hausman, R., Digman, B., Escobar, I. C., Coleman, M. and Chung, T. –S. 2010. Functionalization of Polybenzimidizole Membranes to Impart Negative Charge and Hydrophilicity. Journal of Membrane Science. 363: 195-203.

Doi: https://doi.org/10.1016/j.memsci.2010.07.027.

Zhao, Q., Xie, R., Luo, F., Faraj, Y., Liu, Z., Ju, X., -J., Wang, W. and Chu, L. –Y. 2018. Preparation of High Strength Poly (Vinylidene Fluoride) Porous Membranes with Cellular Structure via Vapor-Induced Phase Separation. Journal of Membrane Science. 549: 151-164.

Doi: https://doi.org/10.1016/j.memsci.2017.10.068.

Pervin, R., Ghosh, P. and Basavaraj, M. G. 2019. Tailoring Pore Distribution in Polymer Films via Evaporation Induced Phase Separation. RSC Advances. 9: 15593-15605.

Doi: https://doi.org/10.1039/C9RA01331H.

Ismail, N., Venault, A., Mikkola, J. –P., Bouyer, D., Drioli, E and Kiadeh, N. T. H. 2020. Investigating the Potential of Membranes Formed by the Vapor Induced Phase Separation Process. Journal of Membrane Science. 597: 117601.

Doi: https://doi.org/10.1016/j.memsci.2019.117601.

Valizadeh, A. and Mussa Farkhani, S. 2014. Electrospinning and Electrospun Nanofibres. IET Nanobiotechnology. 8: 83-92.

Doi: https://doi.org/10.1049/iet-nbt.2012.0040.

Ismail, N., Salleh, W., Ismail, A., Hasbullah, H., Yusof, N., Aziz, F. and Jaafar, J. 2020. Hydrophilic Polymer-Based Membrane for Oily Wastewater Treatment: A Review. Separation and Purification Technology. 233: 116007.

Doi: https://doi.org/10.1016/j.seppur.2019.116007.

Xin, Y. and Reneker, D. H. 2012. Garland Formation Process in Electrospinning. Polymer. 53: 3629-3635.

Doi: https://doi.org/10.1016/j.polymer.2012.05.060.

Ahmed, F. E., Lalia, B. S. and Hashaikeh, R. 2015. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination. 356: 15-30.

Doi: https://doi.org/10.1016/j.desal.2014.09.033.

Sundarrajan, S., Balamurugan, R., Kaur, S. and Ramakrishna, S. 2013. Potential of Engineered Electrospun Nanofiber Membranes for Nanofiltration Applications. Drying Technology. 31: 163-169.

Doi: https://doi.org/10.1080/07373937.2012.693144.

Yuan, Y., Tian, C. and Liu, J. 2021. PEDOT Surface Modified PVDF Filtration Membrane for Conductive Membrane Preparation and Fouling Mitigation. Journal of Environmental Chemical Engineering. 9: 105212.

Doi: https://doi.org/10.1016/j.jece.2021.105212.

Mishra, J. R., Samal, S. K., Mohanty, S. and Nayak, S. K. 2021. Polyvinylidene Fluoride (PVDF)/Ag@TiO2 Nanocomposite Membrane with Enhanced Fouling Resistance and Antibacterial Performance. Materials Chemistry and Physics. 268: 124723.

Doi: https://doi.org/10.1016/j.matchemphys.2021.124723.

Nady, N., Salem, N. and Kandil, S. H. 2021. Preparation and Characterization of a Novel Poly (Vinylidene Fluoride-co-hexafluoropropylene)/Poly (Ethersulfone) Blend Membrane Fabricated Using an Innovative Method of Mixing Electrospinning and Phase Inversion. Polymers. 13(5): 790.

Doi: https://doi.org/10.3390/polym13050790.

Zhu, J., Zhou, S., Li, M., Xue, A., Zhao, Y., Peng, E. and Xing, W. 2020. PVDF Mixed Matrix Ultrafiltration Membrane Incorporated with Deformed Rebar-Like Fe3O4-Palygorskite Nanocomposites to Enhance Strength and Antifouling Properties. Journal of Membrane Science. 612: 118467.

Doi: https://doi.org/10.1016/j.memsci.2020.118467.

Zhang, Y., Ye, L., Zhao, W., Chen, L., Zhang, M., Yang, G. and Zhang, H. 2020. Antifouling Mechanism of the Additive-Free Β-PVDF Membrane in Water Purification Process: Relating The Surface Electron Donor Monopolarity to Membrane-Foulant Interactions. Journal of Membrane Science. 601: 117873.

Doi: https://doi.org/10.1016/j.memsci.2020.117873.

Du, J., Li, N., Tian, Y., Zhang, J. and Zuo, W. 2020. Preparation of PVDF Membrane Blended with Graphene Oxide-Zinc Sulfide (GO-Zns) Nanocomposite for Improving the Anti-Fouling Property. Journal of Photochemistry and Photobiology A: Chemistry. 400: 112694.

Doi: https://doi.org/10.1016/j.jphotochem.2020.112694.

Chen, Z., Chen, G. -E., Xie, H. -Y., Xu, Z. -L., Li, Y. -J., Wan, J. -J., Liu, L. -J. and Mao, H. -F. 2021. Photocatalytic Antifouling Properties of Novel PVDF Membranes Improved by Incorporation of SnO2-GO Nanocomposite for Water Treatment. Separation and Purification Technology. 259: 118184.

Doi: https://doi.org/10.1016/j.seppur.2020.118184.

Nthunya, L. N., Gutierrez, L., Nxumalo, E. N., Verliefde, A. R., Mhlanga, S. D. and Onyango, M. S. 2020. f-MWCNTs/AgNPs-Coated Superhydrophobic PVDF Nanofibre Membrane for Organic, Colloidal, and Biofouling Mitigation in Direct Contact Membrane Distillation. Journal of Environmental Chemical Engineering. 8(2): 103654.

Doi: https://doi.org/10.1016/j.jece.2020.103654.

Bian, X., Huang, J., Qiu, L., Ma, C. and Xi, D. 2021. Preparation, Characterization and Dyeing Wastewater Treatment of a New PVDF/PMMA Five-Bore UF Membrane With β-Cyclodextrin and Additive Combinations. Water Science and Technology. 83(8): 1847-1862.

Doi: https://doi.org/10.2166/wst.2021.104.

Karimi, A., Khataee, A., Ghadimi, A. and Vatanpour, V. 2021. Ball-Milled Cu2S Nanoparticles as An Efficient Additive for Modification of The PVDF Ultrafiltration Membranes: Application to Separation of Protein and Dyes. Journal of Environmental Chemical Engineering. 9(2): 105115.

Doi: https://doi.org/10.1016/j.jece.2021.105115.

Teow, Y. H., Ooi, B. S., Ahmad, A. L. and Lim, J. K. 2021. Investigation of Anti-fouling and UV-Cleaning Properties of PVDF/TiO2 Mixed-Matrix Membrane for Humic Acid Removal. Membranes. 11(1): 16.

Doi: https://doi.org/10.3390/membranes11010016.

Abba, M. U., Man, H. C., Azis, R. a. S., Isma Idris, A., Hazwan Hamzah, M., Yunos, K. F. and Katibi, K. K. 2021. Novel PVDF-PVP Hollow Fiber Membrane Augmented with TiO2 Nanoparticles: Preparation, Characterization and Application for Copper Removal from Leachate. Nanomaterials. 11(2): 399.

Doi: https://doi.org/10.3390/nano11020399.

Deng, W. and Li, Y. Novel Superhydrophilic Antifouling PVDF-BiOCl Nanocomposite Membranes Fabricated via a Modified Blending-Phase Inversion Method. Separation and Purification Technology. 254: 117656.

Doi: https://doi.org/10.1016/j.seppur.2020.117656.

Lin, Y. -C., Chao, C. -M., Wang, D. K., Liu, K. -M. and Tseng, H. -H. 2021. Enhancing the Antifouling Properties of a PVDF Membrane for Protein Separation by Grafting Branch-Like Zwitterions via a Novel Amphiphilic SMA-HEA Linker. Journal of Membrane Science. 624: 119126.

Doi: https://doi.org/10.1016/j.memsci.2021.119126.

Wae AbdulKadir, W. A. F., Ahmad, A. L. and Ooi, B. S. 2021. A Water-Repellent PVDF-HNT Membrane For High and Low Concentrations of Oxytetracycline Treatment via DCMD: An Experimental Investigation. Chemical Engineering Journal. 422: 129644.

Doi: https://doi.org/10.1016/j.cej.2021.129644.

Zheng, H., Wang, D., Sun, X., Jiang, S., Liu, Y., Zhang, D. and Zhang, L. 2021. Surface Modified by Green Synthetic of Cu-MOF-74 to Improve the Anti-Biofouling Properties of PVDF Membranes. Chemical Engineering Journal. 411: 128524.

Doi: https://doi.org/10.1016/j.cej.2021.128524.

Chen, J., Zhang, Z., Han, J., Ren, L., Tian, T. and Wu, H. 2021. A Simple One-Step Method to Synthesize PVDF-PG/KH792 Membrane for Separation of Oil-in-Water Emulsions. Journal of Water Process Engineering. 41: 101996.

Doi: https://doi.org/10.1016/j.jwpe.2021.101996.

Ni, X. -X., Li, J. -H. and Yu, L. -P. 2021. A Novel PVDF Hybrid Membrane with Excellent Active-Passive Integrated Antifouling and Antibacterial Properties Based on A PDA Guiding Effect. Materials Advances. 2: 3300-3314.

Doi: https://doi.org/10.1039/D1MA00058F.

Wu, J., Hou, Z., Yu, Z., Lang, J., Cui, J., Yang, J., Dai, J., Li, C., Yan, Y. and Xie, A. 2021. Facile Preparation of Metal-Polyphenol Coordination Complex Coated PVDF Membrane for Oil/Water Emulsion Separation. Separation and Purification Technology. 258: 118022.

Doi: https://doi.org/10.1016/j.seppur.2020.118022.

Yang, J., Wang, L., Xie, A., Dai, X., Yan, Y. and Dai, J. 2020. Facile Surface Coating of Metal-Tannin Complex onto PVDF Membrane with Underwater Superoleophobicity for Oil-Water Emulsion Separation. Surface and Coatings Technology. 389: 125630.

Doi: https://doi.org/10.1016/j.surfcoat.2020.125630.

Downloads

Published

2024-01-16

Issue

Section

Science and Engineering

How to Cite

THE USE OF PVDF-BASED MEMBRANE FOR TREATING INDUSTRIAL WASTEWATER IN THE PERSPECTIVE OF FABRICATION TECHNIQUE AND FOULING MITIGATION VIA ADDITIVE BLENDING AND SURFACE COATING. (2024). Jurnal Teknologi (Sciences & Engineering), 86(2), 217-234. https://doi.org/10.11113/jurnalteknologi.v86.19389