TAPERED ANGLE MICROFLUIDIC DEVICE FOR CELL SEPARATION USING HYDRODYNAMIC PRINCIPLE

Authors

  • Muhammad Asyraf Jamrus Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0009-0009-0628-2284
  • Mohd. Ridzuan Ahmad Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.19449

Keywords:

CTC, microfluidic device, tapered angle, sedimentation process, passive separation

Abstract

Cell sorting is an essential technique used in a wide range of research, diagnostic, and therapeutic sectors. Fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), and CellSearch, which are conventional techniques, possess inherent limitations. For instance, the utilization of EpCam was ineffective in identifying specific malignancies. Cell sorting techniques have undergone significant advancements, with microfluidics being one of them. Regrettably, the current devices suffer from issues such as clogging and necessitate a lengthy main channel. Therefore, the goal of this work is to build and improve a microfluidic device with a tapered angle. There are three designs presented, each with one inlet, at least two exits, one focusing zone, and one tapering region. Using the finite element simulation software COMSOL Multiphysics, two studies are undertaken, the first examining the effect of taper angle on particle separation, and the second analyzing the effect of flow rate on particle separation. Based on the hydrodynamic theory and sedimentation process, this design allows particles to separate. When the taper angle approached 20 degrees, a mixture of 3 μm and 10 μm polystyrene microbeads were successfully separated, and separation continued until the taper angle approached 89 degrees. This technology offers simple, label-free, and continuous separation of many particles in a self-contained device without the use of bulky gear.

References

B. Sutermaster and E. Darling. 2019. Considerations for Hhigh-yield, High-throughput Cell Enrichment: Fluorescence Versus Magnetic Sorting. Scientific Reports. 9(1). https://doi.org/10.1038/s41598-018-36698-1.

Nitta, N., Sugimura, T., Isozaki, A., Mikami, H., Hiraki, K., Sakuma, S., … & Goda, K. 2018. Intelligent Image-activated Cell Sorting. Cell. 175(1): 266-276.e13. https://doi.org/10.1016/j.cell.2018.08.028.

E. Llufrio, L. Wang, F. Naser, & G. Patti. 2018. Sorting Cells Alters Their Redox State and Cellular Metabolome. Redox Biology. 16: 381-387. https://doi.org/10.1016/j.redox.2018.03.004.

T. Liu, W. Weng, Y. Zhang, X. Sun, & H. Yang. 2020. Applications of Gelatin Methacryloyl (gelma) Hydrogels in Microfluidic Technique-assisted Tissue Engineering. Molecules. 25(22): 5305. https://doi.org/10.3390/molecules25225305.

Yu, M., Stott, S. L., Toner, M., Maheswaran, S., & Haber, D. A. 2011. Circulating Tumor Cells: Approaches to Isolation and Characterization. Journal of Cell Biology. 192(3): 373-382. https://doi.org/10.1083/jcb.201010021.

T. Gorges, I. Tinhofer, M. Drosch, L. Röse, T. Zollner, T. Krahnet al. 2012. Circulating Tumour Cells Escape from Epcam-based Detection Due to Epithelial-to-mesenchymal Transition. BMC Cancer. 12(1). https://doi.org/10.1186/1471-2407-12-178.

J. Kaifi, M. Kunkel, D. Dicker, J. Joude, J. Allen, A. Daset al. 2015. Circulating Tumor Cell Levels are Elevated in Colorectal Cancer Patients with High Tumor Burden in the Liver. Cancer Biology & Therapy. 16(5): 690-698. https://doi.org/10.1080/15384047.2015.1026508.

K. Bhargava, B. Thompson, & N. Malmstadt. 2014. Discrete Elements for 3d Microfluidics. Proceedings of the National Academy of Sciences. 111(42): 15013-15018. https://doi.org/10.1073/pnas.1414764111.

A. Meer, K. Vermeul, A. Poot, J. Feijén, & I. Vermes. 2010. Flow Cytometric Analysis of the Uptake of Low‐density Lipoprotein by Endothelial Cells in Microfluidic Channels. Cytometry Part A. 77A(10): 971-975. https://doi.org/10.1002/cyto.a.20937.

S. Waheed, J. Cabot, N. Macdonald, T. Lewis, R. Guijt, B. Paullet al. 2016. 3d Printed Microfluidic Devices: Enablers and Barriers. Lab on a Chip. 16(11): 1993-2013. https://doi.org/10.1039/c6lc00284f.

J. Qiu, Q. Gao, H. Zhao, J. Fu, & Y. He. 2017. Rapid Customization of 3d Integrated Microfluidic Chips via Modular Structure-based Design. ACS Biomaterials Science Engineering. 3(10): 2606-2616. https://doi.org/10.1021/acsbiomaterials.7b00401.

Y. He, Y. Wu, J. Fu, Q. Gao, & J. Qiu. 2016. Developments of 3d Printing Microfluidics and Applications in Chemistry and Biology: A Review. Electroanalysis. 28(8): 1658-1678. https://doi.org/10.1002/elan.201600043.

S. Şahin, C. Ünlü, & L. Trabzon. 2021. Affinity Biosensors Developed with Quantum Dots in Microfluidic Systems. Emergent Materials. 4(1): 187-209. https://doi.org/10.1007/s42247-021-00195-5.

N. Yönet-Tanyeri, M. Amer, S. Balmert, E. Korkmaz, L. Falo, & S. Little. 2022. Microfluidic Systems for Manufacturing of Microparticle-based Drug-delivery Systems: Design, Construction, and Operation. ACS Biomaterials Science Engineering, 8(7): 2864-2877. https://doi.org/10.1021/acsbiomaterials.2c00066.

X. Zhang, X. Xu, J. Wang, C. Wang, Y. Yan, A. Wuet al. 2021. Public-health-driven Microfluidic Technologies: From Separation to Detection. Micromachines. 12(4): 391. https://doi.org/10.3390/mi12040391.

F. Zhang, L. Wu, W. Nie, L. Huang, J. Zhang, F. Liet al. 2019. Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells. Analytical Chemistry. 91(24): 15726-15731. https://doi.org/10.1021/acs.analchem.9b03920.

W. Tang, D. Jiang, Z. Li, L. Zhu, J. Shi, J. Yanget al. 2018. Recent Advances in Microfluidic Cell Sorting Techniques based on Both Physical and Biochemical Principles. Electrophoresis. 40(6): 930-954. https://doi.org/10.1002/elps.201800361.

X. Zhang, X. Xu, J. Wang, C. Wang, Y. Yan, A. Wuet al. 2021. Public-health-driven Microfluidic Technologies: From Separation to Detection. Micromachines. 12(4): 391. https://doi.org/10.3390/mi12040391.

Y. Wang, B. Nunna, N. Talukder, E. Etienne, & E. Lee. 2021. Blood Plasma Self-separation Technologies during the Self-driven Flow in Microfluidic Platforms. Bioengineering. 8(7): 94. https://doi.org/10.3390/bioengineering8070094.

R. Nasiri, A. Shamloo, & J. Akbari. 2021. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Micromachines. 12(8): 877. https://doi.org/10.3390/mi12080877.

Y. Song, D. Li, & X. Xuan. 2023. Recent Advances in Multimode Microfluidic Separation of Particles and Cells. Electrophoresis. 44(11-12): 910-937. https://doi.org/10.1002/elps.202300027.

R. Nasiri, A. Shamloo, J. Âkbari, P. Tebon, M. Dokmeci, & S. Ahadian. 2020. Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis. Micromachines. 11(7): 699. https://doi.org/10.3390/mi11070699.

N. Xiang and N. Zhang. 2022. Portable Battery-driven Microfluidic Cell Separation Instrument with Multiple Operational Modes. Analytical Chemistry. 94(48): 16813-16820. https://doi.org/10.1021/acs.analchem.2c03833.

K. Matsuura and K. Takata. 2023. Blood Cell Separation using Polypropylene-based Microfluidic Devices based on Deterministic Lateral Displacement. Micromachines. 14(2): 238. https://doi.org/10.3390/mi14020238.

A. Hochstetter, R. Vernekar, R. Austin, H. Becker, J. Beech, D. Fedosovet al. 2020. Deterministic lateral displacement: challenges and perspectives. ACS Nano. 14(9): 10784-10795. https://doi.org/10.1021/acsnano.0c05186.

Y. Song, D. Li, & X. Xuan. 2023. Recent Advances in Multimode Microfluidic Separation of Particles and Cells. Electrophoresis. 44(11-12): 910-937. https://doi.org/10.1002/elps.202300027.

J. Han, B. Krasniqi, J. Kim, M. Keckley, & D. DeVoe. 2020. Miniaturization of Hydrocyclones by High‐resolution 3d Printing for Rapid Microparticle Separation. Advanced Materials Technologies. 5(4). https://doi.org/10.1002/admt.201901105.

Z. Tian, C. Gan, L. Fan, J. Wang, & L. Zhao. 2022. Elastic‐inertial Separation of Microparticle in a Gradually Contracted Microchannel. Electrophoresis. 43: 21-22, 2217-2226. https://doi.org/10.1002/elps.202200083.

Z. Tian, C. Gan, L. Fan, J. Wang, & L. Zhao. 2022. Elastic‐inertial Separation of Microparticle in a Gradually Contracted Microchannel. Electrophoresis. 43: 21-22, 2217-2226. https://doi.org/10.1002/elps.202200083.

Sedimentation. BYJUS. 2016. [Online]. Available: https://byjus.com/chemistry/sedimentation/. [Accessed: 1-Jan-2022].

I. L. Ahmad, M. R. Ahmad, M. Takeuchi, M. Nakajima, and Y. Hasegawa. 2017. Tapered Microfluidic for Continuous Micro-object Separation based on Hydrodynamic principle. IEEE Trans. Biomed. Circuits Syst. 11(6): 1413–1421.

N. N. Yahya, N. A. Aziz, M. R. Buyong, and B. Y. Majlis. 2017. Size-based Particles Separation Utilizing Dielectrophoresis Technique. 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM).

N. A. Aziz, B. Bais, M. R. Buyong, B. Y. Majlis, and A. N. Nordin. 2015. Optimization of Focusing SAW Propagation in Piezoelectric Medium for Microfluidic Applications. 2015 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP).

Downloads

Published

2024-06-02

Issue

Section

Science and Engineering

How to Cite

TAPERED ANGLE MICROFLUIDIC DEVICE FOR CELL SEPARATION USING HYDRODYNAMIC PRINCIPLE. (2024). Jurnal Teknologi, 86(4), 105-114. https://doi.org/10.11113/jurnalteknologi.v86.19449