DOSIMETRY ANALYSIS OF BORON NEUTRON CAPTURE THERAPY (BNCT) ON THYROID CANCER USING PHITS CODE WITH NEUTRON FROM 30 MeV CYCLOTRON

Authors

  • Bilalodin Bilalodin Department of Physics, Faculty Mathematics and natural Science, Jenderal Soedirman University, Indonesia
  • Wihantoro Wihantoro Department of Physics, Faculty Mathematics and natural Science, Jenderal Soedirman University, Indonesia
  • Aris Haryadi Department of Physics, Faculty Mathematics and natural Science, Jenderal Soedirman University, Indonesia
  • Farzand Abdullatif Department of Physics, Faculty Mathematics and natural Science, Jenderal Soedirman University, Indonesia https://orcid.org/0000-0002-4051-3199

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19454

Keywords:

Dosimetry, BNCT, thyroid cancer, cyclotron, PHITS

Abstract

The dosimetry analysis of Boron Neutron Capture Therapy (BNCT) on thyroid cancer using the Particle and Heavy Ion Transport Code System (PHITS) has been carried out. The purpose of research was to determine the received dose rate and the irradiation time required for thyroid cancer therapy using the BNCT method. The geometry of thyroid model is based on MIRD phantom with cancer cells located in the center of the thyroid. The phantom was irradiated using a neutron source from DLBSA based 30 MeV cyclotron.  Simulations were carried out at boron concentrations of (10, 20, 30, 40, 50, 60, and 70) mg/g tissue. Simulation results show that the boron concentration increases with dose rate. The highest dose rate was obtained in the Gross Target Volume (GTV) of 1.590 x 10-2 Gy/s using a boron concentration of 70 mg/g tissue. The effective time for cancer therapy was calculated based on the highest dose rate obtained at 57 minutes.

References

Mullur, R., Liu, Y. Y., and Brent, G. A. 2014. Thyroid Hormone Regulation of Metabolism. Physiological Reviews. Doi: 10.1152/physrev.00030.2013

Beynon, M. E., and Pinneri, K. 2016. An Overview of the Thyroid Gland and Thyroid-related Deaths for the Forensic Pathologist. Academic Forensic Pathology. 6(2): 217-236. Doi: 10.23907/2016.024.

Takahashi, N., Matsushita, H., Umezawa, R., Yamamoto, T., Ishikawa, Y., Katagiri, Y., and Jingu, K. 2019. Hypofractionated Radiotherapy for Anaplastic Thyroid Carcinoma: 15 Years of Experience in a Single Institution. European Thyroid Journal. 8(1): 24-30.

Doi: 10.1159/000493315.

Corrigan, K. L., Williamson, H., Elliott Range, D., Niedzwiecki, D., Brizel, D. M., and Mowery, Y. M. 2019. Treatment Outcomes in Anaplastic Thyroid Cancer. Journal of Thyroid Research. 1-11.

Doi: 10.1155/2019/8218949.

Oktajianto, H.,and Setiawati, E. 2016. Monte Carlo Simulation in Internal Radiotherapy of Thyroid Cancer. Int J Eng Technol Manage Res. 3(9): 16-24.

Doi: https://doi.org/10.29121/ijetmr.v5.i2.2018.669.

Albano, D., Benenati, M., Bruno, A., Bruno, F., Calandri, M., Caruso, D., and Messina, C. 2021. Imaging Side Effects and Complications of Chemotherapy and Radiation Therapy: A Pictorial Review from Head to Toe. Insights Into Imaging. 12(1): 1-28.

Doi: https://doi.org/10.1186/s13244-021-01017-2

Skwierawska, D., López-Valverde, J. A., Balcerzyk, M., and Leal, A. 2022. Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers. 14(12): 2865.

Doi: https://doi.org/10.3390/cancers14122865.

Moss, R. 2015. Critical Review with an Optimistic Outlook on Boron Neutron Capture Therapy (BNCT). Applied Radiation and Isotopes. 88: 2-11.

Doi: 10.1016/j.apradiso.2013.11.109.

Tanaka, H., Takata, T., Watanabe, T., Suzuki, M., Mitsumoto, T., Kawabata, S., and Ono, K. 2020. Characteristic Evaluation of the Thermal Neutron Irradiation Field using a 30 MeV Cyclotron Accelerator for Basic Research on Neutron Capture Therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 983: 164533.

Doi: https://doi.org/10.1016/j.nima.2020.164533.

Li, G., Jiang, W., Zhang, L., Chen, W., and Li, Q. 2021. Design of Beam Shaping Assemblies for Accelerator-Based BNCT with Multi-Terminals. Frontiers in Public Health. 9.

Doi: https://doi.org/10.3389/fpubh.2021.642561.

Faghihi, F., and Khalili, S. 2013. Beam Shaping Assembly of a D – T Neutron Source for BNCT and its Dosimetry Simulation in Deeply-seated Tumor. Journal of Radiation Physics and Chemistry. 89: 13-13.

Doi: 10.1016/j.radphyschem.2013.02.003.

Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., and Niita, K. 2018. Features of Particle and Heavy Ion Transport Code System (PHITS) Version 3.02. Journal of Nuclear Science and Technology. 55(6): 684-690.

Doi: https://doi.org/10.1080/00223131.2017.1419890.

Kumada, H., Takada, K., Aihara, T., Matsumura, A., Sakurai, H., and Sakae, T. 2020. Verification for Dose Estimation Performance of a Monte-Carlo based Treatment Planning System in University of Tsukuba. Applied Radiation and Isotopes. 166: 109222

Doi: 10.1016/j.apradiso.2020.109222.

Zankl, M., Becker, J., Lee, C., Bolch, W. E., Yeom, Y. S., and Kim, C. H. 2018. Computational Phantoms, ICRP/ICRU, and Further Developments. Annals of the ICRP. 47(3-4): 35-44.

Doi: https://doi.org/10.1177/0146645318756229.

Bilalodin, B., Suparta, G. B., Hermanto, A., Palupi, D. S., and Sardjono, Y. 2019. Optimization and Analysis of Neutron Distribution on 30 MeV Cyclotron-based Double Layer Beam Shaping Assembly (DLBSA). Nuclear Physics and Atomic Energy. 20: 70-75.

Doi: 10.15407/jnpae2019.01.070.

Hu, N., Tanaka, H., Yoshikawa, S., Miyao, M., Akita, K., Aihara, T., and Ono, K. 2021. Development of a Dose Distribution Shifter to Fit Inside the Collimator of a Boron Neutron Capture Therapy Irradiation System to Treat Superficial Tumours. Physica Medica. 82: 17-24.

Doi: https://doi.org/10.1016/j.ejmp.2021.01.003.

Harish, A. F., and Sardjono, Y. 2018. Dose Analysis of Boron Neutron Capture Therapy (BNCT) Treatment for Lung Cancer Based on Particle and Heavy Ion Transport Code System (PHITS). ASEAN Journal on Science and Technology for Development. 35(3): 187-194

Doi: https://doi.org/10.29037/ajstd.545.

Pedrosa-Rivera, M., Praena, J., Porras, I., Ruiz-Magaña, M. J., and Ruiz-Ruiz, C. 2020. A Simple Approximation for the Evaluation of the Photon Iso-effective Dose in Boron Neutron Capture Therapy based on Dose-independent Weighting Factors. Applied Radiation and Isotopes. 157: 109018

Doi: 10.1016/j.apradiso.2019.109018.

Rasouli, and Masoudi. 2012. Design and Optimization of a Beam Sha ping Assembly for BNCT based on D-T Neutron Generator and Dose Evaluation using a Simulated Head Fantom. Applied Radiation Isotopes. 70(12): 2755-2762.

Doi: 10.1016/j.apradiso.2012.08.008.

Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., ... & Wartofsky, L. 2016. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 26(1): 1-133.

Doi: 10.1089/thy.2015.0020.

Bilalodin, Haryadi, A., Sari, K., Wihantoro. 2022. Optimization and Verification of Double Layer Beam Shaping Assembly (Dlbsa) for Epithermal Neutron Generation. Jurnal Teknologi. 84(4): 103-112.

Doi: https://doi.org/10.11113/jurnalteknologi.v84.18047.

Martin, J. E. 2006. Physics for Radiation Protection. 2nd ed. Weinheim: Willey-Vch Verlag GmbH & Co.

Chellan, P., and Sadler, P. J. 2015. The Elements of Life and Medicines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373(2037): 20140182.

Doi: https://doi.org/10.1098/rsta.2014.0182.

Ardana, I., and Sardjono, Y. 2017. Optimization of a Neutron Beam Shaping Assembly Design for BNCT and Its Dosimetry Simulation based on MCNPX. Tri Dasa Mega. 19(3): 121-130.

Doi: http://dx.doi.org/10.17146/tdm.2017.19.3.3582.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

DOSIMETRY ANALYSIS OF BORON NEUTRON CAPTURE THERAPY (BNCT) ON THYROID CANCER USING PHITS CODE WITH NEUTRON FROM 30 MeV CYCLOTRON. (2023). Jurnal Teknologi, 85(5), 21-26. https://doi.org/10.11113/jurnalteknologi.v85.19454