EFFECTS OF SOAKING PROCESS AND ROTATING METHOD ON EDIBLE BIRD NEST CLEANING TIME AND CLEANLINESS

Authors

  • Divean Seenivasan Advanced Manufacturing System Research Group, Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Pauh Putra, 02600, Arau, Perlis, Malaysia
  • Chan Sin Tan Advanced Manufacturing System Research Group, Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Pauh Putra, 02600, Arau, Perlis, Malaysia https://orcid.org/0000-0002-5727-7401

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19458

Keywords:

Rotating, soaking, edible bird nest, taguchi method, optimization

Abstract

The paper examines the effects of rotation and soaking processes on the cleaning time and cleanliness of edible bird nests (EBN). During breeding season, swift’s species known as Aerodramus secrete salivary glands to build a nest that humans harvest. To be sold, the harvested EBN must be cleaned. The raw EBN cleaning process consists of four operations: soaking, cleaning, reshaping, and drying. Generally, harvested EBN is cleaned manually using tweezers. However, this procedure is time-consuming, as cleaning one EBN take about an hour. Therefore, several mechanical cleaning methods were required to clean raw EBN to improve cleaning time and cleanliness. This research aims to improve the two mechanical cleaning methods, rotating and soaking. The Taguchi Method is used to design and optimize the overall parameter setup. The selected optimized parameter set will be tested to determine the best parameter sets. For the current study, EBN wetting process has time settings of 12, 18, and 24 hours. The rotating method's time settings were 30, 45, and 60 seconds. The soaking time can be set to 2, 4, or 6 minutes. Each of these parameters is thoroughly tested to determine the best-optimized one. The experiment is then carried out by combining the two parameters chosen in a sequence to determine the cleanliness of the raw EBN. According to the experiments' results, the cleaning sequence contributes 63.75 percent cleanliness at a cleaning time of 5 minutes, which includes a soaking time of 4 minutes and a rotating method of 60 seconds.

References

L. S. Chua and S. N. Zukefli. 2016. A Comprehensive Review of Edible Bird Nests and Swiftlet Farming. J Integr Med. 14(6): 415-428. Doi: 10.1016/S2095-4964(16)60282-0.

S. K. Tai, Z. Hamzah, Q. H. Ng, and C. S. Tan. 2020. Surface Morphology Study on Unclean, Commercial and Bromelain Treated Edible Bird Nest (EBN) using Scanning Electron Microscope. IOP Conf Ser Mater Sci Eng. 932(1). Doi: 10.1088/1757-899X/932/1/012013.

A. F. el Sheikha. 2021. Why the Importance of Geo-origin Tracing of Edible Bird Nests is Arising? Food Research International. 150: 110806. Doi: 10.1016/J.FOODRES.2021.110806.

Utomo, B., Rosyidi, D., Radiati, L. E., Tri Puspaningsih, N. N., & Proborini, W. D. 2018. Use of Keratinase to Maintain Pre-washing Glycoprotein Profiles of Edible Bird’s Nest. Drug Invention Today. 10(Special Issue 2): 2986-2990.

Zainab Hamzah, Sarojini Jeyaraman, Nur Hulwani Ibrahim, Othman Hashim, Boon-Beng Lee, Kamarudin Hussin. 2013. A Rapid Technique to Determine Purity of Edible Bird Nest Adv. Environ. Biol. 7(12): 3758-3765,

T. Kok Hong, C. Fah Choy, and A. Ong Han Kiat. 2018. Approach to Improve Edible Bird Nest Quality & Establishing Better Bird Nest Cleaning Process Facility through Best Value Approach. Journal for the Advancement of Performance Information and Value. 10(1).

Y. Dai, J. Cao, Y. Wang, Y. Chen, and L. Jiang. 2021. A Comprehensive Review of Edible Bird’s Nest. Food Research International. 140: 109875. Doi: 10.1016/J.FOODRES.2020.109875.

D. Seenivasan and T. C. Sin. 2022. Optimization of Brushing, Bubble, and Microbubble Techniques Using Taguchi Method for Raw Edible Bird Nest Cleaning Purpose. Pertanika Journal of Social Sciences and Humanities. 30(2): 1273-1288. Doi: 10.47836/PJST.30.2.23.

L. He, X. Liu, X. Du, and C. Wu. 2020. In-situ Identification of Shaking Frequency for Adaptive Vibratory Fruit Harvesting. Comput Electron Agric. 170: 105245. Doi: 10.1016/J.COMPAG.2020.105245.

C. Y. Xian, T. C. Sin, M. R. N. Liyana, A. Awang, and M. Fathullah. 2017. Green Perspective in Food Industry Production Line Design: A Review. AIP Conf Proc. 1885. Doi: 10.1063/1.5002297.

Matsuura, K., Uchida, T., Ogawa, S., Guan, C., & Yanase, S. 2016. Surface Interaction of Microbubbles and Applications of Hydrogen-bubble Method for Cleaning and Separation. 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/MHS.2015.7438234.

I. N. Illa, T. C. Sin, G. M. Fathullah, and A. Rosmaini. 2018. Mathematical Modeling of Quality and Productivity in Industries: A Review. AIP Conf Proc. 2030. Doi: 10.1063/1.5066767.

S. Paneru and I. Jeelani. 2021. Computer Vision Applications in Construction: Current State, Opportunities & Challenges. Autom Constr. 132: 103940. Doi: 10.1016/J.AUTCON.2021.103940.

Q. Song, J. Wu, H. Wang, Y. An, and G. Tang. 2022. Computer Vision-based Illumination-robust and Multi-point Simultaneous Structural Displacement Measuring Method. Mech Syst Signal Process. 170: 108822. Doi: 10.1016/J.YMSSP.2022.108822.

Malaysia’s Edible Bird Nest (EBN) Industry. 2022. FFTC Agricultural Policy Platform (FFTC-AP). https://ap.fftc.org.tw/article/843 (accessed Aug. 10, 2022).

S. S. Zamri, M. Mahadi, F. Abdullah, A. Syafiuddin, and T. Hadibarata. 2020. Evaluation of Protein Content and Antioxidant Activity of Edible Bird’s Nest by Various Methods. Biointerface Res Appl Chem. 102: 5277-5283. Doi: 10.33263/BRIAC102.277283.

K. L. Gwee, L. H. Cheng, and K. S. Yenz. 2019. Optimization of Lighting Parameters to Improve Visibility of Impurities in Edible Bird’s Nest. J Electron Imaging. 28(02): 1. Doi: 10.1117/1.JEI.28.2.023014.

L. He, X. Liu, X. Du, and C. Wu. 2020. In-situ Identification of Shaking Frequency for Adaptive Vibratory Fruit Harvesting. Comput Electron Agric. 170: 105245. Doi: 10.1016/J.COMPAG.2020.105245.

T. H. Liu, G. Luo, R. Ehsani, A. Toudeshki, X. J. Zou, and H. J. Wang. 2018. Simulation Study on the Effects of Tine-Shaking Frequency and Penetrating Depth on Fruit Detachment for Citrus Canopy-shaker Harvesting. Comput Electron Agric. 148: 54-62. Doi: 10.1016/J.COMPAG.2018.03.004.

K. M. Ang, E. K. Seow, P. S. Fam, and L. H. Cheng. 2022. Classification of Edible Bird’s Nest Samples using a Logistic Regression Model through the Mineral Ratio Approach. Food Control. 137: 108921. Doi: 10.1016/J.FOODCONT.2022.108921.

N. Daud, S. Mohamad Yusop, A. S. Babji, S. J. Lim, S. R. Sarbini, and T. Hui Yan. 2021. Edible Bird’s Nest: Physicochemical Properties, Production, and Application of Bioactive Extracts and Glycopeptides. Food Reviews International. 37(2): 177-196. Doi: 10.1080/87559129.2019.1696359.

H. Thakare, A. Parekh, A. Upletawala, and B. Behede. 2022. Application of Mixed Level Design of Taguchi Method to Counter Flow Vortex Tube. Mater Today Proc. 57: 2242-2249. Doi: 10.1016/J.MATPR.2021.12.444.

A. F. el Sheikha. 2021. Why the Importance of Geo-origin Tracing of Edible Bird Nests is Arising? Food Research International. 150: 110806. Doi: 10.1016/J.FOODRES.2021.110806.

Downloads

Published

2023-09-17

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF SOAKING PROCESS AND ROTATING METHOD ON EDIBLE BIRD NEST CLEANING TIME AND CLEANLINESS. (2023). Jurnal Teknologi, 85(6), 121-131. https://doi.org/10.11113/jurnalteknologi.v85.19458