DEVELOPMENT OF DUAL-SWITCHES BRIDGELESS PFC TOTEM-POLE SEPIC CONVERTER FOR LED DRIVER APPLICATION
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.19479Keywords:
SEPIC converter, Bridgeless PFC, Totem-Pole design, PF, THDi, output voltage rippleAbstract
This paper presents a Dual-Switch Bridgeless Power Factor Correction (DSBPFC) Single Ended Primary Inductor Converter (SEPIC) with Totem-Pole circuit structure for LED Driver Application. The conventional Full-Bridge Rectifier (FBR) SEPIC converter has five diodes, four in the rectifier bridge and one in the SEPIC. In addition, the FBR SEPIC converter has several drawbacks, including low power factor (PF), high current harmonics (THDi), and high output voltage ripple, due to the combination of two operation circuits in a single converter structure. The proposed DSBPFC SEPIC converter with Totem-Pole method improves PF and reduces THDi and output voltage ripple compared to the conventional FBR SEPIC. Additionally, it only requires three diodes instead of five. The optimization parameter design minimizes the THDi and output voltage ripple. In addition, to improve the quality of the AC source, the inductors are designed to operate in DCM and CCM based on the ripple-balancing concept between input and output inductors. As to reduce output voltage ripple, a high capacitance of output capacitor is used. The simulation result of the THDi is 3.8% whereas the experimental result shows that the THDi is 23.5%; which can be attributed to the parasitic elements at the passive components. Furthermore, the experimental results of the output voltage ripple are 2 V with output capacitance of 3300 μF, compared to the output voltage ripple of 4.40 V for 470 μF. Therefore, the proposed converter's design is confirmed with an output power of approximately 14.4 W.
References
R. Ali, I. Daut, S. Taib, and N. S. Jamoshid. 2010. A New Proposal to Solar and Grid-connected Hybrid Electricity for Homes and Buildings in Malaysia. 2010 4th International Power Engineering and Optimization Conference (PEOCO). 445-448. Doi: 10.1109/PEOCO.2010.5559194.
B. L. and R. Seyezhai. 2022. Reliability Prediction of Bridgeless AC-DC SEPIC with V-Fill for LED Applications. 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS). 1-6. Doi: 10.1109/ICPECTS56089.2022.10047352.
X. Lin, S. Ding, D. Wu, and J. Luo. 2021. A Novel AC/DC Single-Phase Bridgeless SEPIC PFC Converter with Reduced Conduction Losses and Simple Structure. 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). 127-131. Doi: 10.1109/WiPDAAsia51810.2021.9656085.
X. Lin, J. Luo, and S. Ding. 2021. New Single-Phase Bridgeless High-Voltage-Gain SEPIC PFC Converters with Improved Efficiency. 2021 IEEE 3rd International Conference on Circuits and Systems (ICCS). 225-230. Doi: 10.1109/ICCS52645.2021.9697323.
A. Prudenzi, U. Grasselli, and R. Lamedica. 2001. IEC Std. 61000-3-2 Harmonic Current Emission Limits in Practical Systems: Need of Considering Loading Level and Attenuation Effects. Power Engineering Society Summer Meeting, 2001. 1: 277-282. Doi: 10.1109/PESS.2001.970026.
A. Agrawal, A. Shrivastava, K. C. Jana, S. Tripathi, and A. Rai. 2019. Single Stage High Brightness LED Driver with Improved Power Quality. IOP Conf. Ser. Mater. Sci. Eng. 594(1): 12012. Doi: 10.1088/1757-899X/594/1/012012.
I. H. Hayirli, B. Kelleci, O. C. Kivanc, S. B. Ozturk, R. N. Tuncay, and M. O. Citci. 2019. Design and Analysis of 240 Watt SEPIC Converter for LED Applications. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). 804-809. Doi: 10.1109/ISIE.2019.8781396.
L. Petersen. 2001. Input-current-shaper based on a Modified SEPIC Converter with Low Voltage Stress. 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230). 2: 666-671. Doi: 10.1109/PESC.2001.954194.
P. Scalia. 1998. A Double-switch Single-stage PFC Offline Switcher Operating in CCM with High Efficiency and Low Cost. PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196). 2: 1041-1047. Doi: 10.1109/PESC.1998.703133.
J. Chen, D. Maksimovic, and R. Erickson. 2001. A New Low-Stress Buck-boost Converter for Universal-input PPC Applications. APEC 2001, Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181). 1: 343-349. Doi: 10.1109/APEC.2001.911670.
H. Wei and I. Batarseh. 1998. Comparison of Basic Converter Topologies for Power Factor Correction. Proceedings IEEE Southeastcon ’98 Engineering for a New Era. 348-353. Doi: 10.1109/SECON.1998.673368.
P. F. de Melo, R. Gules, E. F. R. Romaneli, and R. C. Annunziato. 2010. A Modified SEPIC Converter for High-Power-Factor Rectifier and Universal Input Voltage Applications. IEEE Trans. Power Electron. 25(2): 310-321. Doi: 10.1109/TPEL.2009.2027323.
E. H. Ismail. 2009. Bridgeless SEPIC Rectifier with Unity Power Factor and Reduced Conduction Losses. IEEE Trans. Ind. Electron. 56(4): 1147-1157. Doi: 10.1109/TIE.2008.2007552.
C.-J. Tseng and C.-L. Chen. 1999. A Novel ZVT PWM Cuk Power-factor Corrector. IEEE Trans. Ind. Electron. 46(4): 780-787. Doi: 10.1109/41.778240.
C.-J. Tseng and C.-L. Chen. 1998. A Novel Zero-voltage-Transition PWM Cuk Power Factor Corrector. APEC ’98 Thirteenth Annual Applied Power Electronics Conference and Exposition. 2: 646-651. Doi: 10.1109/APEC.1998.653968.
J. Chen, D. Maksimovic, and R. W. Erickson. 2006. Analysis and Design of a Low-stress Buck-boost Converter in Universal-input PFC Applications. IEEE Trans. Power Electron. 21(2): 320-329. Doi: 10.1109/TPEL.2005.869744.
A. N. Kasiran, A. Ponniran, M. A. Harimon, and H. H. Hamzah. 2018. A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration. J. Phys. Conf. Ser. 995(1): 012062. Doi: 10.1088/1742-6596/995/1/012062.
M. K. . Noor et al. 2019. Optimization Parameter Design of SEPIC-Cuk Converter. Int. J. Integr. Eng. 11(1): 27-32. Doi: 10.30880/ijie. 2019.11.01.004.
M. K. R. Noor et al. 2018. Optimization of PFC SEPIC Converter Parameters Design for Minimization of THD and Voltage Ripple. International Journal of Engineering & Technology. 7: 240-245. Doi: 10.11591/ijpeds.v10.i1.pp514-521.
M. K. Romai Noor et al. 2019. Modified Single-switch Bridgeless PFC SEPIC Structure by Eliminating Circulating Current and Power Quality Improvement. IET Power Electron. 12(14): 3611–3858. Doi: 10.1049/iet-pel.2018.6076.
M. K. Romai Noor et al. 2022. Improvement of Single-Switch Bridgeless PFC Cuk Converter for Circulating Current Elimination and Components Maximum Current Stress Reduction. Int. J. Integr. Eng. 14(1): 181-190. Doi: 10.30880/ijie.2022.14.01.016.
A. Ponniran et al. 2023. Current THD and Output Voltage Ripple Characteristics of Flyback PFC Converters with LED Lamp and Nonlinear RL Loads. Int. J. Integr. Eng. 15(4): 193–200. Doi: 10.30880/ijie.2023.15.04.017.
M. A. Z. A. Rashid, A. Ponniran, M. K. R. Noor, J. N. Jumadril, M. H. Yatim, and A. N. Kasiran. 2019. Optimization of PFC cuk Converter Parameters Design for Minimization of THD and Voltage Ripple. Int. J. Power Electron. Drive Syst. 10(1): 514–521. Doi: 10.11591/ijpeds.v10.i1.pp514-521.
N. A. A. Isa et al. 2019. Performance between PFC Cuk and Bridgeless PFC Cuk Converter with Various Output Voltages. Int. J. Recent Technol. Eng. 8(2 Special Issue 2): 41-46. Doi: 10.35940/ijrte.B1008.0782S219.
J. Jumadril et al. 2019. An Improved Two-Switch Bridgeless PFC SEPIC Structure for Total Harmonic Distortion Reduction and Circulating Current Minimization. 2019 International Conference on Electrical Engineering and Computer Science (ICECOS). 277-282. Doi: 10.1109/ICECOS47637.2019.8984500.
M. N. A. Samat, A. Ponniran, M. A. N. Kasiran, M. H. Yatim, M. K. R. Noor, and J. N. Jumadril. 2021. Modular Multilevel DC-DC Boost Converter for High Voltage Gain Achievement with Reduction of Current and Voltage Stresses. Int. J. Integr. Eng. 13(2): 32-41. Doi: 10.30880/ijie.2021.13.02.005.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.