STUDY THE INFLUENCE OF WELDING PARAMETERS BY TAGUCHI’S DESIGN ON THE MECHANICAL PROPERTIES OF WELDED MILD STEEL (S235JR)

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19653

Keywords:

Mild steel, Gas metal arc welding, Taguchi’s design, mechanical properties, microstructure

Abstract

Gas metal arc welding is a leading process in fusion welding with increased productivity and good quality. The welding parameters are crucial in determining welding quality, cost, and productivity. In this study, mild steel with a 10-mm-thick sheet was welded by gas metal arc welding under predetermined parameters of welding voltage, wire feed speed, and groove shape. The analysis made by Taguchi’s design to investigate the effect of these parameters on tensile strength and Vickers micro-hardness of welding. The microstructure of the fusion zone and heat-affected zone is analyzed to monitor their change concerning the mechanical properties. The results showed that tensile strength decreased with decreased hardness. Also, the tensile strength and hardness were higher (a maximum of 305 MPa and 2170 HVN) at welding made at a lower voltage (20 volts), lower wire feed speed (5.9 m/min), and V-shaped base metal groove. The increased precipitation of perlite structure was shown during welding, which has lower tensile strength and hardness. Widmanstatten ferrite and coarser α-ferrite were presented for welding with a lower cooling time. Taguchi’s design showed that voltage at 20 volts has the highest effect on tensile strength, followed by wire feed speed at 5.9 m/min and V-shaped welding.

References

Garcia, L. M., Noronha, V.T., and Ribeiro, J. 2021. Effect of Welding Orientation in Angular Distortion in Multipass GMAW. Journal of Manufacturing and Materials Processing. 5(2): 63.

Doi: https://doi.org/10.3390/jmmp5020063.

Singh, V., Chandrasekaran, M., Samanta, S., and Thirugnanasambandam, M. 2019. Artificial Neural Network Modelling of Weld Bead Characteristics during GMAW of Nitrogen Strengthened Austenitic Stainless Steel. AIP Conference Proceedings. 218(1): 020024.

Doi: https://doi.org/10.1063/1.5117936.

Ghazvinloo, H. R., and Honarbakhsh-Raouf, A. 2021. Numerical Modeling of Heat-affected Zone in the GMAW Process. Material Science. 56: 807-813.

Doi: https://doi.org/10.1007/s11003-021-00498-2.

Jiang, Y., and Lin, P. 2019. Improvement of Numerical Simulation for GMAW based on a New Model with Thermocapillary Effect. Journal of Computational and Applied Mathematics. 356: 37-45.

Doi: https://doi.org/10.1016/j.cam.2019.01.039.

Ghazvinloo, H. R., Honarbakhsh-Raouf, A., and Shadfar, N. 2021. A Comprehensive Study on the Welded Joints Appearance in GMAW. Journal of Materials and Environmental Science. 12(12): 1320-1331.

http://www.jmaterenvironsci.com/Journal/vol12-10.html.

Prakash, S. O., Karuppusway, P., and Gandhi, B. S. 2021. Enhancing the Notch Tensile Strength of GMAW Welded AISI 1013 Low Carbon Steel with Taguchi Optimization. A Journal of Physical Sciences, Engineering and Technology. 13(01): 20-25.

Doi: https://doi.org/10.18090/samriddhi.v13i01.5.

Soltani, S., Eghtesad, M., and Bazargan-Lari, Y. 2020. Mass and Heat Transfer Control in the GMAW Process Utilizing Feedback Linearization and Sliding Mode Observer. International Communications in Heat and Mass Transfer. 111: 104410.

Doi: https://doi.org/10.1016/j.icheatmasstransfer.2019.104410.

Kumar, A. S. V., and Gandhinathan, R. 2020. Process Parameters for Metal Inert Gas Welding of Mild Steel by using Taguchi Technique–A Review. International Journal of Material Sciences and Technology. 10(1): 1-14.

http://www.ripublication.com/ijmst20/ijmstv10n1_01.pdf.

Casarini, A., Coelho, J. P., Olívio, E., Braz-César, M. T., and Ribeiro, J. E. 2020. Optimization and Influence of GMAW Parameters for Weld Geometrical and Mechanical Properties using the Taguchi Method and Variance Analysis. ICEUBI2019 International Congress on Engineering-Engineering for Evolution. 781-794.

Ramarao, M., King, M. F. L., Sivakumar, A., Manikandan, V., Vijayakumar, M., and Subbiah, R. 2022. Optimizing GMAW Parameters to Achieve High Impact Strength of the Dissimilar Weld Joints using Taguchi Approach. Materials Today: Proceedings. 50: 861-866.

Doi: https://doi.org/10.1016/j.matpr.2021.06.137.

Casarini, A., Coelho, J. P., Olívio, E., Braz-César, M. T., and Ribeiro, J. E. 2020. Optimization and Influence of GMAW Parameters for Weld Geometrical and Mechanical Properties using the Taguchi Method and Variance Analysis. ICEUBI2019 International Congress on Engineering-Engineering for Evolution. 781-794.

Doi: https://doi.org/10.18502/keg.v5i6.7097.

Assefa, A. T., Ahmed, G. M. S., Alamri, S., Edacherian, A., Jiru, M. G., Pandey, V., and Hossain, N. 2022. Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals. Materials. 15(13): 4426.

Doi: https://doi.org/10.3390/ma15134426

Kalita, K., Burande, D., Ghadai, R. K., and Chakraborty, S. 2023. Finite Element Modelling, Predictive Modelling and Optimization of Metal Inert Gas, Tungsten Inert Gas and Friction Stir Welding Processes: A Comprehensive Review. Archives of Computational Methods in Engineering. 30(1): 271-299.

Doi: https://doi.org/10.1007/s11831-022-09797-6.

Ogbonna, O. S., Akinlabi, S. A., Madushele, N., Fatoba, O. S., and Akinlabi, E. T. 2023. Grey-based Taguchi Method for Multi-weld Quality Optimization of Gas Metal Arc Dissimilar Joining of Mild Steel and 316 Stainless Steel. Results in Engineering. 17: 100963.

Doi: https://doi.org/10.1016/j.rineng.2023.100963.

Om Prakash, S., Pathmasharma, S., Bharath, V., and Deivasikamani, D. M. 2019. Parameters Optimization of Gas Metal Arc Welding Process (GMAW) by using Design of Experiments. International Journal of Technical Innovation in Modern Engineering and Science. 5: 1-12.

https://ijtimes.com/IJTIMES/index.php/ijtimes/article/view/3260.

Assefa, A. T., Ahmed, G. M. S., Alamri, S., Edacherian, A., Jiru, M. G., Pandey, V., and Hossain, N. 2022. Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals. Materials. 15(13): 4426.

Doi: https://doi.org/10.3390/ma15134426.

Khan, M. A., and Agrawal, Y. 2022. GMAW Process Parameter Utilisation Analysis using ANOVA and Taguchi Relations. International Journal of Engineering Research in Current Trends. 2(3): 69-71.

https://www.ijerct.com/papers/02-03/gmaw-process-parameter-utilisation-analysis-using-anova-and-taguchi-relations.pdf.

Khamari, B. K., Dash, S. S., Karak, S. K., and Biswal, B. B. 2019. Effect of Welding Parameters on Mechanical and Microstructural Properties of GMAW and SMAW Mild Steel Joints. Ironmaking and Steelmaking. 1-9.

Doi: https://doi.org/10.1080/03019233.2019.1623592.

Elfallah, S. S. S. 2022. Influence of GMAW Factors on the Tensile Strength of Commercial Steel. International Science and Technology Journal. 6(4): 1-16.

https://www.stcrs.com.ly/istj/article-details.php?id=500.

Elfallah, S. 2022. Study on the Influence of Groove shape on the Tensile Strength of Commercial Steel. Journal of Engineering Research. 1-15.

Doi: https://doi.org/10.36909/jer.18695.

Elfallah, S. S. 2022. Effect of GMAW on the Tensile Strength and Hardness of Commercial Steel. International Journal of Computer Sciences and Engineering. 10(9): 14-20.

Doi: https://doi.org/10.26438/ijcse/v10i9.1420.

Calderón, L., Bohórquez, O., Rojas, M. A., and Pertuz, A. 2021. Experimental Relationship of Tensile Strength and Hardness of Welded Structural Steel. Journal of Physics: Conference Series. 2046(1): 012065.

Doi: https://doi.org/10.1088/1742-6596/2046/1/012065.

Luo, Y., Gu, W., Peng, W., Jin, Q., Qin, Q., and Yi, C. 2020. A Study on Microstructure, Residual Stresses and Stress Corrosion Cracking of Repair Welding on 304 Stainless Steel: Part I-Effects of Heat Input. Materials. 13(10): 2416.

Doi: https://doi.org/10.3390/ma13102416.

Sabry, I. 2021. Experimental and Statistical Analysis of Possibility Sources–rotation Speed, Clamping Torque and Clamping Pith for Quality Assessment in Friction Stir Welding. Management and Production Engineering Review. 12(3): 84-96.

Doi: https://doi.org/10.24425/mper.2021.138533.

Sankar, N., Malarvizhi, S., and Balasubramanian, V. 2021. Mechanical Properties and Microstructural Characteristics of Rotating Arc-gas Metal Arc Welded Carbon Steel Joints. Journal of the Mechanical Behavior of Materials. 30(1): 49-58.

Doi: https://doi.org/10.1515/jmbm-2021-0006.

ASTM. 2022. Standard Test Methods for Tension Testing of Metallic Materials. E8/E8M-22.

Doi: https://doi.org/10.1520/E0008_E0008M-22.

World Material. 2023. EN 1.0038 steel S235JR Material Equivalent, Properties, Composition. Information on https://www.theworldmaterial.com/1-0038-steel-s235jr-material/.

Weld Wire. 2023. ER70S-6 welding wire data sheet. Information on https://www.weldwire.net/weld_products/ww70s-6/.

Ahmed, M. M., Ataya, S., El-Sayed Seleman, M. M., Mahdy, A. M., Alsaleh, N. A., and Ahmed, E. 2020. Heat Input and Mechanical Properties Investigation of Friction Stir Welded aa5083/aa5754 and aa5083/aa7020. Metals. 11(1): 68. Doi: https://doi.org/10.3390/met11010068.

Lahtinen, T., Vilaça, P., Peura, P., and Mehtonen, S. 2019. MAG Welding Tests of Modern High Strength Steels with Minimum Yield Strength of 700 MPa. Applied Sciences. 9(5): 1031.

Doi: https://doi.org/10.3390/app9051031.

Scharf-Wildenhain, R., Haelsig, A., Hensel, J., Wandtke, K., Schroepfer, D., Kromm, A., and Kannengiesser, T. 2022. Influence of Heat Control on Properties and Residual Stresses of Additive-Welded High-Strength Steel Components. Metals. 12(6): 951.

Doi: https://doi.org/10.3390/met12060951.

Vemanaboina, H., Sridhar Babu, B., Gundabattini, E., Ferro, P., and Kumar, K. 2021. Effect of Heat Input on Distortions and Residual Stresses Induced by Gas Tungsten Arc Welding in SS 316L to INCONEL625 Multipass Dissimilar Welded Joints. Advances in Materials Science and Engineering. 2021.

Doi: https://doi.org/10.1155/2021/1028461.

Alhafadhi, M. H., and Krallics, G. 2019. The Effect of Heat Input Parameters on Residual Stress Distribution by Numerical Simulation. IOP Conference Series: Materials Science and Engineering. 613(1): 012035.

Doi: https://doi:10.1088/1757-899X/613/1/012035.

Ji, H., Gupta, M. K., Song, Q., Cai, W., Zheng, T., Zhao, Y., and Pimenov, D. Y. 2021. Microstructure and Machinability Evaluation in Micro Milling of Selective Laser Melted Inconel 718 Alloy. Journal of Materials Research and Technology. 14: 348-362.

Doi: https://doi.org/10.1016/j.jmrt.2021.06.081.

Sridharan, N., Bunn, J., Kottman, M., Fancher, C. M., Payzant, A., Noakes, M., and Babu, S. S. 2021. Consumable Development to Tailor Residual Stress in Parts Fabricated using Directed Energy Deposition Processes. Additive Manufacturing. 39: 101837.

Doi: https://doi.org/10.1016/j.addma.2021.101837.

Hao, X., Zhao, X., Chen, H., Huang, B., Ma, J., Wang, C., and Yang, Y. 2021. Comparative Study on Corrosion Behaviors of Ferrite-pearlite Steel with Dual-phase Steel in the Simulated Bottom Plate Environment of Cargo Oil Tanks. Journal of Materials Research and Technology. 12: 399-411.

Doi: https://doi.org/10.1016/j.jmrt.2021.02.095.

Mathevon, A. 2020. Characterization and Modelling of Microstructural Evolutions and Mechanical Properties during the Thermal Treatments of Dual-Phase Steels. Doctoral Dissertation, Université de Lyon.

https://theses.hal.science/tel-03186693/.

Mortazavian, E., Wang, Z., and Teng, H. 2020. Repair of Light Rail Track through Restoration of the Worn Part of the Railhead using Submerged Arc Welding Process. The International Journal of Advanced Manufacturing Technology. 107(7-8): 3315-3332.

Doi: https://doi.org/10.1007/s00170-020-05208-x.

Yin, X., He, G., Meng, W., Xu, Z., Hu, L., and Ma, Q. 2020. Comparison Study of Low-heat-input Wire Arc-fabricated Nickel-based Alloy by Cold Metal Transfer and Plasma Arc. Journal of Materials Engineering and Performance. 29: 4222-4232.

Doi: https://doi.org/10.1007/s11665-020-04942-3.

Mehta, Y., Rajput, S. K., and Kumar, S. 2021. Establish Time-temperature-transformation Diagram based on Dilatometry Results and Microstructural Evolutions in an AISI 1010 Steel. Indian Journal of Engineering and Materials Sciences. 28(3): 234-239.

Doi: https://doi.org/10.56042/ijems.v28i3.45776.

Poyraz, O., and Ögel, B. 2020. Recrystallization, Grain Growth and Austenite Formation in Cold Rolled Steels during Intercritical Annealing. Journal of Materials Research and Technology. 9(5): 11263-11277.

Doi: https://doi.org/10.1016/j.jmrt.2020.08.015.

de Oliveira Moraes, D., Júnior, P. Z., e Oliveira, V. H. P. M., de Oliveira, A. C., and da Cruz Payão Filho, J. 2022. Effect of the Girth Welding Interpass Temperature on the Toughness of the HAZ of a Ni-based Superalloy 625 Clad API 5L X65 Pipe Welded Joint. Journal of Materials Research and Technology. 19: 2556-2566.

Doi: https://doi.org/10.1016/j.jmrt.2022.05.141.

Xue, J., Peng, P., Guo, W., Xia, M., Tan, C., Wan, Z., and Li, Y. 2021. HAZ Characterization and Mechanical Properties of QP980-DP980 Laser Welded Joints. Chinese Journal of Mechanical Engineering. 34(1): 80.

Doi: https://doi.org/10.1186/s10033-021-00596-x.

Prajapati, V., Vora, J. J., Das, S., and Abhishek, K. 2020. Study of Parametric Influence and Welding Performance Optimization during Regulated Metal Deposition (RMD™) using Grey Integrated with Fuzzy Taguchi Approach. Journal of Manufacturing Processes. 54: 286-300.

Doi: https://doi.org/10.1016/j.mtcomm.2023.105401.

Downloads

Published

2023-06-25

Issue

Section

Science and Engineering

How to Cite

STUDY THE INFLUENCE OF WELDING PARAMETERS BY TAGUCHI’S DESIGN ON THE MECHANICAL PROPERTIES OF WELDED MILD STEEL (S235JR). (2023). Jurnal Teknologi, 85(4), 55-66. https://doi.org/10.11113/jurnalteknologi.v85.19653