ANALYSIS OF ACTIVE SECONDARY SUSPENSION WITH MODIFIED SKYHOOK CONTROLLER TO IMPROVE RIDE PERFORMANCE OF RAILWAY VEHICLE

Authors

  • Fathiah Mohamed Jamil Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Azman Abdullah ᵃFakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia ᵇCentre for Advanced Research on Energy (CARe), Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0002-2402-5486
  • Mohd Hanif Harun ᵃFakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia ᵇCentre for Advanced Research on Energy (CARe), Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Munaliza Ibrahim Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Fauzi Ahmad ᵃFakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia ᵇCentre for Advanced Research on Energy (CARe), Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
  • Ubaidillah Ubaidillah Mechanical Engineering Department, Universitas Sebelas Maret, J1. Ir. Sutami 36A, Kentigan, Sukarta 57126, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19771

Keywords:

Railway vehicle dynamic, active suspension system, modified-skyhook, ride performance, lateral motion

Abstract

The aim of this work is to determine the effectiveness of active suspension control systems in improving the ride quality of railway vehicles. A 13-degrees-of-freedom (DOF) full-body model is provided, including lateral, yaw, and rool motions of the body and bogies, and lateral displacement of the four wheelsets. The suspension system of railway vehicles and the dynamics of track irregularities are combined in a set of governing equations. MATLAB/Simulink is used to build a full-body dynamics model of a rail vehicle. The effectiveness of the active suspension systems equipped with the suggested controller has been tested for the purpose of evaluating its performance. Compared to passive systems, the results showed a more than 60 % improvement in vehicle performance on irregular tracks.

References

Lee, S. Y., & Cheng, Y. C. 2005). Hunting Stability Analysis of High-speed Railway Vehicle Trucks on Tangent Tracks. Journal of Sound and Vibration. 282(3-5): 881-898.

Habeeb, H. A., Mohan, A. E., Abdullah, M. A., Abdul, M. H., & Tunggal, D. 2020. Performance Analysis of Brake Discs in Trains. Jurnal Tribologi. 25: 1-15.

Abdullah, M. A., Hassan, N. A., Foat, N. A. M., Shukri, M. F. A. M., & Mohan, A. E. 2018. Swaying Phenomenon of Express Railway Train in Malaysia. Proceedings of Innovative Research and Industrial Dialogue. 18: 98-99.

Mohan, A. E., Abdullah, M. A., Azmi, M. A. I., Arsaat, A., Abdullah, W. M. Z. W., Harun, M. H., & Ahmad, F. 2018. Comfort Parameters Tuning Analysis for Vehicle Suspension Pitch Performance. International Journal of Engineering and Technology (IJET). 9(6): 4471-4480.

Ibrahim, M., Abdullah, M. A., Jamil, F. M., Harun, M. H., & Ahmad, F. 2017. Verification of Commercial Vehicle Ride Dynamics. Proceedings of Innovative Research and Industrial Dialogue. 16: 185-186.

Kumar S.,Kumar A. 2017. Ride Comfort of a Higher Speed Rail Vehicle using a Magnetorheological Suspension System. Proc IMechE Part K: J Multi-body Dynamics. Doi: 10.1177/1464419317706873.

Abdullah, M. A., Ridzuan, M. R., Ahmad, F., Jamil, F. M., & Ibrahim, M. 2017. Vehicle Active Suspension Control using Multi-order PID Approach. Journal of Advanced Manufacturing Technology (JAMT). 11(1): 1-14.

Zong, L.H., Gong, X. L., Xuan, S. H. and Guo, C. Y. 2013. Semi-active H∞ Control of High-speed Railway Vehicle Suspension with Megnetoheological Dampers. Vehicle System Dynamics. International Journal of Vehicle Mechanics and Mobility. 51(5): 600-626. http://dx.doi.org/10.1080/00423114.2012.758858.

Dong, X., Yu, M., Liao, C., et al. 2010. Comparative Research on Semi-active Control Strategies for Magneto-Rheological Suspension. Nonlinear Dynamics. 59(3): 433-453. Doi 10.1007/s11071-009-9550-8.

Goncalves, F. D. 2001. Dynamic Analysis of Semi-active Control Techniques for Vehicle Applications. Virginia Polytechnic Institute and State University. 1.

Yagiz, N., Gursel, A. 2005. Active Suspension Control of a Railway Vehicle with a Flexible Body. International Journal of Vehicle Autonomous Systems. 3(1): 80-95. Doi: 10.1504/ijvas.2005.007039.

Sam, Y. M., Osman, J. H. S., Ghani, M. R. A. 2012. Sliding Mode Control of Active Suspension System. Jurnal Teknologi. 37(D): 1-10. Doi: https://doi.org/10.11113/jt.v37.534.

Al-Zughaibi A., Davies H. 2015. Controller Design for Active Suspension System of ¼ Car with Unknown Mass and Time-Delay. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 9(8).

Selamat, H., & Zawawi, M. A. 2009. Active Control of High-Speed Railway Vehicles. Elektrika. 11(1): 1-7.

Abdullah, M. A., Jamil, J. F., Mohamad, M. A., Rosdi, R. S., Ramlan, M. N. I. 2015. Design Selection and Analysis of Energy Regenerative Suspension. Jurnal Teknologi. 76(10): 27-3. Doi: https://doi.org/10.11113/jt.v76.5789.

Jamil, J. F., Abdullah, M. A., Tamaldin, N., & Mohan, A. E. 2015. Fabrication and Testing of Electromagnetic Energy Regenerative Suspension System. Jurnal Teknologi. 77(21).

Kim, C., Ro, P. I. 1997. A Sliding Mode Controller for Vehicle Active Suspension Systems with Non-linearities. Journal of Automobile Engineering. 212.

Nor, A. S. M, Selamat, H., Alimin, A. J. 2011. Optimal Controller Design for A Railway Vehicle Suspension System Using Particle Swarm Optimization. Jurnal Teknologi. 54: 71-84. Doi: https://doi.org/10.11113/jt.v54.92.

Shin, Y. J., You, W. H., Hur, H. M., & Park, J. H. 2014. H∞ Control of Railway Vehicle Suspension with MR Damper using Scaled Roller Rig. Smart Materials and Structures. 23(9). https://doi.org/10.1088/0964-1726/23/9/095023.

Gopala Rao, L. V. V., Narayanan, S. 2009. Sky-hook Control of Nonlinear Quarter Car Model Traversing Rough Road Matching Performance of LQR Control. Journal of Sound and Vibration. 323(3-5): 515-529. https://doi.org/10.1016/j.jsv.2009.01.025.

Yang, J., Li, J., Du, Y. 2006. Adaptive Fuzzy Control of Lateral Semi-active Suspension for High-Speed Railway Vehicle. International Conference on Intelligent Computing. 1104- 1115.

Yang, Z., Zhang, J., Chen, Z., Zhang, B. 2011. Semi-active Control of High-speed Trains Based on Fuzzy PID Control. Proceedia Engineering. 15: 521-525. Doi: 10.1016/j.proeng.2011.08.099.

Chen, Y. 2009. Skyhook Surface Sliding Mode Control on Semi-active Vehicle Suspension Systems for Ride Comfort Enhancement. Engineering. 1(1): 23-32.

Yamin, A. H. M., Talib, M. H. A., Darus, I. Z. M., Nor, N. S. M. 2022. Magneto-Rheological (MR) Damper – Parametric Modelling and Experimental Validation for Lord RD 8040-1. Jurnal Teknologi. 84(22): 27-34.

Bhardawaj, S., Sharma, R. C., & Sharma, S. K. 2020. Development of Multibody Dynamical using MR Damper based Semi-active Bio-inspired Chaotic Fruit Fly and Fuzzy Logic Hybrid Suspension Control for Rail Vehicle System. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics. 234(4): 723-744. https://doi.org/10.1177/1464419320953685.

Wang, D. H., Liao, W. H. 2009. Semi-active Suspension Systems for Railway Vehicles using Magnetorheological Dampers. Part I: System Integration and Modelling. Vehicle System Dynamics. 47(11): 1305-1325. Doi: 10.1080/00423110802538328.

Harun, M. H., Abdullah, M. A., Abu Bakar, S. A., Mohammad Nasir, M. Z., W. Abdullah, W. M. Z., & Wan Mohamad, W. M. F. 2020. Railway Vehicle Stability Improvement using Bogie-based Skyhook Control. Proceedings of Mechanical Engineering Research Day. 2020: 41-42.

Harun, M. H., Abdullah, W. M. Z. W., Jamaluddin, H., Rahman, R. A., & Hudha, K. 2014. Hybrid Skyhook-stability Augmentation System for Ride Quality Improvement of Railway Vehicle. Applied Mechanics and Materials. 663: 141-145. https://doi.org/10.4028/www.scientific.net/AMM.663.141.

Jamil, F. M., Harun, M. H., Abdullah, M. A., Ibrahim, M., & Ahmad, F. 2022. Railway Car Body Lateral Hunting Attenuation using Body-based Modified Skyhook Control for Secondary Suspension. Proceedings of Mechanical Engineering Research Day. 2022: 234-235.

Bakar, S. A. A, Jamaluddin, H. Rahman, R. A., Samin, P. M. Hudha, K. 2008. Vehicle Ride Performance with Semi-active Suspension System using Modified Skyhook Algorithm and Current Generator Model. International Journal of Vehicle Autonomous Systems. 6(3/4): 197-221. Doi:10.1504/ijvas.2008.023577.

Karnopp, D., Crosby, M. J., and Harwood, R. A. 1974. Vibration Control using Semi-active Force Generators. Journal of Engineering for Industry. 96: 619-626.

Abulifa, A. A., Ahmad, R. R., Soh, A. C., Radzi, M. A. M., & Hassan, M. K. 2017. Modelling and Simulation of Battery Electric Vehicle by using MATLAB-Simulink. 2017 IEEE 15th Student Conference on Research and Development (SCOReD) IEEE. 383-387.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

ANALYSIS OF ACTIVE SECONDARY SUSPENSION WITH MODIFIED SKYHOOK CONTROLLER TO IMPROVE RIDE PERFORMANCE OF RAILWAY VEHICLE. (2023). Jurnal Teknologi, 85(5), 43-54. https://doi.org/10.11113/jurnalteknologi.v85.19771