COMPARATIVE PROTEIN PROFILE ANALYSIS OF DIFFERENTIALLY EXTRACTED WHOLE CELL BACTERIAL PROTEIN DERIVED FROM SALMONELLA TYPHI AND INVASIVE NON-TYPHOIDAL SALMONELLA

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19827

Keywords:

Salmonella Typhi, Salmonella spp, Differential Extraction, SDS-PAGE, typhoid fever

Abstract

Typhoid fever is an endemic disease that has been acknowledged as a major global health burden. Typhoid fever is a neglected re-emerging infectious disease that is transmitted through fecal oral route. Nevertheless, non-typhoidal Salmonella outbreak has been increasing globally with large number of cases involving immunocompromised individuals. The clinical diagnosis of typhoid is difficult due to the overlapping symptoms of typhoid fever, non-typhoidal Salmonella, and other associated febrile diseases, which causes to delayed treatment. Herein, this study aims to provide a reproducible, discriminative protein fingerprint of two different Salmonella serovars using a differential extraction procedure comprising of whole cell protein (WCP), cell surface protein (CSP) and surface-depleted whole cell protein (sdWCP) derived from whole cell bacterial protein of Salmonella Typhi (S.Typhi) and Salmonella spp (S.spp). In the present research, we perform comparative analysis to characterize protein profiles of two differentially extracted Salmonella serovars by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and dendrogram analysis. The findings showed that the proteins were reproducible in optimized concentration. Separation of protein into three different extractions revealed discriminative protein profiles with major and micro-heterogenicity. We observed the diverseness of differentially extracted proteins between two strains which provided an effective adjunct that can be used in identification of Salmonella strains. The results achieved when differential extraction procedure was applied, provides a promising, future opportunity for further immunoproteomic classifications.

References

F. Marineli, G. Tsoucalas, M. Karamanou, and G. Androutsos. 2013. Mary Mallon (1869-1938) and the History of Typhoid Fever. Ann. Gastroenterol. 26(2): 132-134.

S. Vanderslott and C. Kirchelle. 2019. Decades Neglecting an Ancient Disease has Triggered a Health Emergency around the World. The Conversation. https://theconversation.com/decades-neglecting-an-ancient-disease-has-triggered-a-health-emergency-around-the-world-121282 (accessed May 31, 2022).

World Health Organization (WHO). 2018. Typhoid. https://www.who.int/news-room/fact-sheets/detail/typhoid (accessed Sep. 14, 2022).

K. C. VanMeter and R. J. Hubert. 2016. Microbiology for the Healthcare Professional. Microbiology for the Healthcare Professional. 2nd ed. Mosby.

C. M. Parry. 2004. Typhoid Feve. Current Infectious Disease Reports. 6(1): 27-33. Doi: 10.1007/s11908-004-0021-6.

John L. Brusch and Michael Stuart Bronze. 2022. Typhoid Fever Medication: Antibiotics, Corticosteroids, Glycylcyclines, Carbapenems.. https://emedicine.medscape.com/article/231135-medication (accessed Sep. 14, 2022).

K. Wolman-Tardy. 2018. Scientists from the Mérieux Foundation and the Child Health Research Foundation Warn of Potential Typhoid Crisis After Discovering New Highly Drug-Resistant Strains. Mérieux Foundation and the Child Health Research Foundation (CHRF). www.fondation-merieux.org (accessed Sep. 07, 2022).

A. M. Tanmoy et al. 2018. Salmonella Enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance. MBio. 9(6). Doi: 10.1128/mBio.02112-18.

R. Balasubramanian et al. 2018. The Global Burden and Epidemiology of Invasive Non-typhoidal Salmonella Infections. Human Vaccines and Immunotherapeutics. 15(6): 1421-1426. Doi: 10.1080/21645515.2018.1504717.

C. S. Marchello et al. 2021. Incidence of Non-typhoidal Salmonella invasive Disease: A Systematic Review and Meta-analysis. Journal of Infection. 83(5): 523-532. Doi: 10.1016/j.jinf.2021.06.029.

B. Tack, J. Vanaenrode, J. Y. Verbakel, J. Toelen, and J. Jacobs. 2020. Invasive Non-typhoidal Salmonella Infections in Sub-Saharan Africa: A Systematic Review on Antimicrobial Resistance and Treatment. BMC Medicine. 18(1): 1-22. Doi: 10.1186/s12916-020-01652-4.

J. D. Stanaway et al. 2019. The Global Burden of Non-typhoidal Salmonella Invasive Disease: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Infect. Dis. 19(12): 1312-1324. Doi: 10.1016/S1473-3099(19)30418-9.

O. Gal-Mor, E. C. Boyle, and G. A. Grassl. 2014. Same Species, Different Diseases: How and Why Typhoidal and Non-typhoidal Salmonella enterica Serovars Differ. Frontiers in Microbiology. 5: 391. Doi: 10.3389/fmicb.2014.00391.

A. Aksakal. 2010. Analysis of Whole Cell Protein Profiles of Salmonella serovars Isolated from Chicken, Turkey and Sheep Faeces by SDS-PAGE. Vet. Med. (Praha). 55(6): 259-263. Doi: 10.17221/2986-VETMED.

B. Diep et al. 2019. Salmonella Serotyping; Comparison of the Traditional Method to a Microarray-based Method and an in silico Platform Using Whole Genome Sequencing Data. Front. Microbiol. 10: 2554. Doi: 10.3389/fmicb.2019.02554.

S. Banerji, S. Simon, A. Tille, A. Fruth, and A. Flieger. 2020. Genome-based Salmonella Serotyping as the New Gold Standard. Sci. Rep. 10(1): 1-10. Doi: 10.1038/s41598-020-61254-1.

P. Wattiau et al. 2008. Evaluation of the Premi®Test Salmonella, A Commercial Low-Density DNA Microarray System Intended for Routine Identification and Typing of Salmonella Enterica. Int. J. Food Microbiol. 123(3): 293-298. Doi: 10.1016/j.ijfoodmicro.2008.01.006.

V. Magomani, N. Wolter, S. Tempia, M. Du Plessis, L. De Gouveia, and A. Von Gottberg. 2014. Challenges of using Molecular Serotyping for Surveillance of Pneumococcal Disease. J. Clin. Microbiol. 52(9): 3271-3276. Doi: 10.1128/JCM.01061-14.

N. Singhal, A. K. Maurya, and J. S. Virdi. 2019. Bacterial Whole Cell Protein Profiling: Methodology, Applications and Constraints. Curr. Proteomics. 16(2): 102-109. Doi: 10.2174/1570164615666180905102253.

L. F. Mocca and C. E. Frasch. 1982. Sodium Dodecyl Sulfate-polyacrylamide Gel Typing System for Characterization of Neisseria Meningitidis Isolates. J. Clin. Microbiol. 16(2): 240-244. Doi: 10.1128/jcm.16.2.240-244.1982.

M. Costas, B. Holmes, and L. L. Sloss. 1990. Comparison of SDS–PAGE Protein Patterns with Other Typing Methods for Investigating the Epidemiology of ‘Klebsiella Aerogenes. Epidemiol. Infect. 104(3): 455–465. Doi: 10.1017/S0950268800047464.

A. B. Nowakowski, W. J. Wobig, and D. H. Petering. 2014. Native SDS-PAGE: High Resolution Electrophoretic Separation of Proteins with Retention of Native Properties Including Bound Metal Ions. Metallomics. 6(5): 1068-1078. doi: 10.1039/c4mt00033a.

H. Katrcolu, B. Aslm, Z. N. Yüksekdao, N. Mercan, and Y. Beyatl. 2003. Production of Poly-β-hydroxybutyrate (PHB) and Differentiation of Putative Bacillus Mutant Strains by SDS-PAGE of Total Cell Protein. African J. Biotechnol. 2(6): 158-164. Doi: 10.4314/ajb.v2i6.14788.

F. Begum, Y. Adachi, and M. Khan. 2008. Characterization of Salmonella Serovars in Comparison with Some Enterobacteria by SDS-page Analysis. Bangladesh J. Vet. Med. 6(2): 169-174. Doi: 10.3329/bjvm.v6i2.2331.

U. K. Laemmli. 1970. Cleavage of structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227(5259): 680-685. Doi: 10.1038/227680a0.

J. R. McQuiston, R. J. Waters, B. A. Dinsmore, M. L. Mikoleit, and P. I. Fields. 2011. Molecular Determination of H Antigens of Salmonella by Use of a Microsphere-based Liquid Array. J. Clin. Microbiol. 49(2): 565-573. Doi: 10.1128/JCM.01323-10.

K. W. Deitsch, S. A. Lukehart, and J. R. Stringer. 2009. Common Strategies for Antigenic Variation by Bacterial, Fungal And Protozoan Pathogens. Nature Reviews Microbiology. 7(7): 493-503. Doi: 10.1038/nrmicro2145.

M. Costas, L. L. Sloss, R. J. Owen, and M. A. Gaston. 1989. Evaluation of Numerical Analysis of SDS-PAGE of protein Patterns for Typing Enterobacter Cloacae. Epidemiol. Infect. 103(2): 265-274. Doi: 10.1017/S0950268800030624.

M. Mahendrakumar and M. Asrar Sheriff. 2015. Whole cell Protein Profiling of Human Pathogenic Bacteria Isolated from Clinical Samples. Asian J. Sci. Res. 8(3): 374-380. Doi: 10.3923/ajsr.2015.374.380.

D. Robertson, G. P. Mitchell, J. S. Gilroy, C. Gerrish, G. P. Bolwell, and A. R. Slabas. 1997. Differential Extraction and Protein Sequencing Reveals Major Differences in Patterns of Primary Cell Wall Proteins from Plants. J. Biol. Chem. 272(25): 15841-15848. Doi: 10.1074/jbc.272.25.15841.

O. Prakash et al. 2007. Polyphasic Approach of Bacterial Classification - An Overview of Recent Advances. Indian J. Microbiol. 47(2): 98-108. Doi: 10.1007/s12088-007-0022-x.

A. Nakamura, Y. Ota, A. Mizukami, T. Ito, Y. B. Ngwai, and Y. Adachi. 2002. Evaluation of Aviguard, A Commercial Competitive Exclusion Product for Efficacy andter-effect on the Antibody Response of Chicks to Salmonel Af la. Poult. Sci. 81(11): 1653-1660. Doi: 10.1093/ps/81.11.1653.

L. Açik, A. Temiz, A. Çelebi, S. Arslan, and R. Yilmaz. 2005. Protein Patterns and Plasmid Profiles of the Bacterial Strains Isolated from a Poultry Slaughterhouse in Ankara, Turkey. Food Technol. Biotechnol. 43(3): 255-262.

I. Berber, C. Cokmus, and E. Atalan. 2003. Characterization of Staphylococcus Species by SDS-PAGE of Whole-cell and Extracellular Proteins. Microbiology. 72: 42-47. Doi: 10.1023/A:1022221905449.

D. M. Alhaj-Qasem et al. 2020. Laboratory Diagnosis of Paratyphoid Fever: Opportunity of Surface Plasmon Resonance. Diagnostics. 10(7). Doi: 10.3390/diagnostics10070438.

Downloads

Published

2023-06-25

Issue

Section

Science and Engineering

How to Cite

COMPARATIVE PROTEIN PROFILE ANALYSIS OF DIFFERENTIALLY EXTRACTED WHOLE CELL BACTERIAL PROTEIN DERIVED FROM SALMONELLA TYPHI AND INVASIVE NON-TYPHOIDAL SALMONELLA . (2023). Jurnal Teknologi, 85(4), 189-197. https://doi.org/10.11113/jurnalteknologi.v85.19827