INVESTIGATION ON DIMENSIONAL ACCURACY OF ADDITIVE MANUFACTURED SAMPLES

Authors

  • Shajahan Maidin Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0003-0570-0439
  • Thavinnesh Kumar Rajendran Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0002-9397-0174
  • Latifah Mohd Ali Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohamad Afiq Sharum Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.19856

Keywords:

Dimensional accuracy, fused deposition modeling, stainless steel, ABS, Tough PLA, coordinate measuring machine

Abstract

Fused deposition modelling (FDM) is a typical 3D printing process. Some benefits of FDM-printed components are durability, mechanical property stability, and the quality of the parts. However, it has several drawbacks, such as the emergence of seamlines between layers and the creation of extra material residue on the surface of the printed object, which compromises the dimensional accuracy of the printed part. When making pieces that fit correctly, the dimensions of 3D-printed components must be accurate. This article discusses the dimensional accuracy of 3D-printed components created using an open-source FDM 3D printer. The filament material for printing the test samples is stainless steel, ABS and tough PLA. The test samples were printed three times each and examined using a coordinate measuring machine (CMM). The geometries measured and compared between the three printed sample materials are the thickness, corner radius, angle, perpendicular, hole diameter, and flatness. The result shows that the printed samples could not achieve 100% dimensional accuracy, with stainless steel having the highest accuracy ranging from 99 - 98%. The data of stainless steel were then compared side by side with Tough PLA and ABS, where the accuracy of stainless steel is similar to ABS while PLA has the lowest accuracy. The accuracy of the stainless-steel specimen was then analysed and compared to tough PLA and ABS to identify the printing accuracy of the stainless-steel specimen, which is relatively new.

Author Biographies

  • Thavinnesh Kumar Rajendran, Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

     

     

  • Latifah Mohd Ali, Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

     

     

  • Mohamad Afiq Sharum , Faculty of Technology & Industrial Engineering & Manufacturing Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

     

     

References

N. Asnafi, T. Shams, D. Aspenberg, and C. Öberg. 2019. 3D Metal Printing from an Industrial Perspective-Product Design, Production, and Business Models. BHM Berg- und Hüttenmännische Monatshefte. 164(3): 91-100. Doi:10.1007/s00501-019-0827-z. https://doi.org/10.1007/s00501-019-0827-z.

Attaran, M. 2017. The Rise of 3-D Printing: The Advantages of Additive Manufacturing over Traditional Manufacturing. Business Horizons. 60(5): 677-688. https://doi.org/10.1016/j.bushor.2017.05.011.

Ayrilmis, N., Mechanics, W., Faculty, F., & University-cerrahpasa, I. 2018. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polymer Testing. 71(July): 163-166. https://doi.org/10.1016/j.polymertesting.2018.09.009.

Babu, V. V. P., & Gb, V. K. 2022. Materials Today: Proceedings A Review on 3D Printing Process on Metals and Their Surface Roughness and Dimensional Accuracy. Materials Today: Proceedings. 64(1): 523-530. https://doi.org/10.1016/j.matpr.2022.05.018.

Blakey-Milner, B., Gradl, P., Snedden, G., Brooks, M., Pitot, J., Lopez, E., Leary, M., Berto, F., & du Plessis, A. 2021. Metal Additive Manufacturing in Aerospace: A Review. Materials and Design. 209: 110008. https://doi.org/10.1016/j.matdes.2021.110008.

Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. 2013. Bone Tissue Engineering using 3D Printing. Materials Today. 16(12): 496-504. https://doi.org/10.1016/j.mattod.2013.11.017.

Cano-Vicent, A., Tambuwala, M. M., Hassan, S. S., Barh, D., Aljabali, A. A. A., Birkett, M., Arjunan, A., & Serrano-Aroca, Á. 2021. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Additive Manufacturing. 47(September): 102378. https://doi.org/10.1016/j.addma.2021.102378.

Berman, B. 2012. 3-D Printing: The New Industrial Revolution. Business Horizons. 55(2): 155-162. https://doi.org/10.1016/j.bushor.2011.11.003.

Beslagic, E., & Varda, K. 2022. Dimensional Accuracy and Tolerances -n Additive Manufacturing. April. https://doi.org/10.5644/PI2022.202.25.

Carneiro, O. S., Silva, A. F., & Gomes, R. 2015. Fused Deposition Modeling with Polypropylene. Materials and Design. 83: 768-776. https://doi.org/10.1016/j.matdes.2015.06.053.

A. Kanyilmaz et al. (2022). Role of Metal 3D Printing to Increase Quality and Resource-efficiency in the Construction Sector. Additive Manufacturing. 50: 102541. Doi: 10.1016/j.addma.2021.102541.

Reddy, V., Flys, O., Chaparala, A., Berrimi, C. E., Amogh, V., & Rosen, B. G. (2018). Study on Surface Texture of Fused Deposition Modeling. Procedia Manufacturing. 25: 389-396. https://doi.org/10.1016/j.promfg.2018.06.108.

Yoo, I. S., Braun, T., Kaestle, C., Spahr, M., Franke, J., Kestel, P., Wartzack, S., Bromberger, J., & Feige, E. 2016. Model Factory for Additive Manufacturing of Mechatronic Products: Interconnecting World-class Technology Partnerships with Leading AM Players. Procedia CIRP. 54: 210-214. https://doi.org/10.1016/j.procir.2016.03.113.

Tronvoll, S. A., Elverum, C. W., & Welo, T. 2018. Dimensional Accuracy of Threads Manufactured by Fused Deposition Modeling. Procedia Manufacturing. 26: 763-773. https://doi.org/10.1016/j.promfg.2018.07.088.

Petrovic, V., Vicente Haro Gonzalez, J., Jordá Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. 2010. Additive Layered Manufacturing: Sectors of Industrial Application Shown through Case Studies. International Journal of Production Research. 49(4): 1061-1079. https://doi.org/10.1080/0020754090347978.

Wong, K. V., & Hernandez, A. 2012. A Review of Additive Manufacturing. ISRN Mechanical Engineering. 2012: 1-10. https://doi.org/10.5402/2012/208760.

Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C. L., Shin, Y. C., Zhang, S., & Zavattieri, P. D. 2015. The Status, Challenges, and Future of Additive Manufacturing in Engineering. CAD Computer Aided Design. 69: 65-89. https://doi.org/10.1016/j.cad.2015.04.001

Islam, M. N., Boswell, B., & Pramanik, A. (2013). An Investigation of Dimensional Accuracy of Parts Produced by Three-Dimensional Printing. I, 5–8.

Lalehpour, A., Janeteas, C., & Barari, A. 2018. Surface Roughness of FDM Parts After Post-processing with Acetone Vapor Bath Smoothing Process. The International Journal of Advanced Manufacturing Technology. 95: 1505-1520. https://doi.org/10.1007/s00170-017-1165-5.

Nurhudan, A. I., Supriadi, S., Whulanza, Y., & Saragih, A. S. 2021. Additive Manufacturing of Metallic Based on Extrusion Process: A Review. Journal of Manufacturing Processes. 66: 228-237. https://doi.org/10.1016/j.jmapro.2021.04.018.

Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. 2015. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites using Fused Deposition Modeling. Composites Part B: Engineering. 80: 369-378. https://doi.org/10.1016/j.compositesb.2015.06.013.

Lim, W., Bae, J., Seo, M., Min, J., Lee, J., Hyun, S., Jung, Y., & Huh, P. 2022. A Novel UV-curable Acryl-polyurethane for Flexural 3D Printing Architectures. Additive Manufacturing. 51: 102625. https://doi.org/10.1016/j.addma.2022.102625.

Robert, J., Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., & Hutchins, D. A. 2012. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. Plos One. 7(11). https://doi.org/10.1371/journal.pone.0049365.

Cuesta, E. 2019. Dimensional Accuracy Analysis of Direct Metal Printing Machine Focusing on Roller Positioning Errors Focusing on Roller Positioning Errors. Procedia Manufacturing. 41: 2-9. https://doi.org/10.1016/j.promfg.2019.07.022.

Hanon, M. M., Zsidai, L., & Ma, Q. 2021. Accuracy Investigation of 3D Printed PLA with Various Process Parameters and Different Colors. Materials Today: Proceedings. 42(5): 3089-3096. https://doi.org/10.1016/j.matpr.2020.12.1246.

Melchels, F. P. W., Feijen, J., & Grijpma, D. W. 2010. A Review on Stereolithography and Its Applications in Biomedical Engineering. Biomaterials. 31(24): 6121-6130. https://doi.org/10.1016/j.biomaterials.2010.04.05.

Olakanmi, E. O., Cochrane, R. F., & Dalgarno, K. W. 2015. A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, And Properties. Progress in Materials Science. 74: 401-477. https://doi.org/10.1016/j.pmatsci.2015.03.002.

Palomba, G., Crupi, V., & Epasto, G. 2022. Additively Manufactured Lightweight Monitoring Drones: Design and Experimental Investigation. Polymer. 241: 124557. https://doi.org/10.1016/j.polymer.2022.124557.

Patel, R., Desai, C., Kushwah, S., & Mangrola, M. H. 2022. A Review Article on FDM Process Parameters in 3D Printing for Composite Materials. Materials Today: Proceedings. 60(3): 2162-2166. https://doi.org/10.1016/j.matpr.2022.02.385.

Kadivar, M. A., Akbari, J., Youse, R., Rahi, A., & Nick, M. G. 2014. Investigating The Effects of Vibration Method on Ultrasonic-assisted Drilling of Al/SiCp Metal Matrix Composites. Robotics and Computer-Integrated Manufacturing. 30(3): 344-350. https://doi.org/10.1016/j.rcim.2013.10.001.

Reddy, V., Flys, O., Chaparala, A., Berrimi, C. E., V, A., & Rosen, B. 2018. Study on surface texture of Fused Deposition Modeling. Procedia Manufacturing. 25: 389-396. https://doi.org/10.1016/j.promfg.2018.06.108.

Lekurwale, S., Karanwad, T., & Banerjee, S. 2022. Selective Laser Sintering (SLS) of 3D Printlets using a 3D Printer Comprised of IR/red-diode Laser. Annals of 3D Printed Medicine. 6: 100054. https://doi.org/10.1016/j.stlm.2022.100054.

Kwok, S. W., Hin, K., Goh, H., Tan, Z. D., Ting, S., Tan, M., Tjiu, W. W., Soh, J. Y., Jie, Z., Ng, G., Chan, Y. Z., Hui, H. K., Eng, K., & Goh, J. 2017. Electrically Conductive Filament for 3D-printed Circuits and Sensors. Applied Materials Today. 9: 167-175. https://doi.org/10.1016/j.apmt.2017.07.001.

A. Kanyilmaz et al. 2022. Role of Metal 3D Printing to Increase Quality and Resource-Efficiency in the Construction Sector. Additive Manufacturing. 50: 102541. Doi: 10.1016/j.addma.2021.102541.

Naveed, N. 2021. Investigate the Effects of Process Parameters on Material Properties and Microstructural Changes of 3D-printed Specimens using Fused Deposition Modelling (FDM). Materials Technology. 36(5): 317-330. https://doi.org/10.1080/10667857.2020.1758475.

Kulkarni, M. V. 2015. Selective Laser Sintering Process-A Review. International Journal of Current Engineering and Scientific Research (IJCESR). 2(10): 2393-8374.

Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. 2015. Optimisation of Fused Deposition Modeling Process Parameters: A Review of Current Research and Future Prospects. Advances in Manufacturing. 3(1): 42-53.

https://doi.org/10.1007/s40436-014-0097-7.

Basavaraj, C. K., & M. Vishwas. 2016. Studies on Effect of Fused Deposition Modeling Process Parameters on Ultimate Tensile Strength and Dimensional Accuracy of Nylon. IOP Conference Series: Materials Science and Engineering, 149(1). https://doi.org/10.1088/1757-899X/149/1/012035.

A. S V and K. V. 2018. Analysis of Ductile to Brittle Transition Temperature of Stainless Steel. SSRN Electronic Journal. Doi:10.2139/ssrn.3178568.

Maidin, S., Hayati, N. M. N., Rajendran, T. K., & Muhammad, A. H. 2023. Comparative Analysis of Acrylonitrile Butadiene Styrene and Polylactic Acid Samples’ Mechanical Properties Printed in Vacuum. Additive Manufacturing. 67: 103485.

Beniak, J., Križan, P., Šooš, Ľ., & Matúš, M. 2019. Research on Shape and Dimensional Accuracy of FDM Produced Parts. IOP Conference Series: Materials Science and Engineering. 501: 012030. https://doi.org/10.1088/1757-899x/501/1/012030.

Kitsakis, K., Alabey, P., Kechagias, J., & Vaxevanidis, N. 2016. A Study of the Dimensional Accuracy Obtained by Low Cost 3D Printing for Possible Application in Medicine. IOP Conference Series: Materials Science and Engineering. 161: 012025. https://doi.org/10.1088/1757-899x/161/1/012025.

C. C. Seepersad. 2014. Challenges and Opportunities in Design for Additive Manufacturing. 3D Printing and Additive Manufacturing. 1(1): 10-13. Doi:10.1089/3dp.2013.0006.

Wimmer, M. G., & Compton, B. G. 2022. Semi-solid Epoxy Feedstocks with High Glass Transition Temperature for Material Extrusion Additive Manufacturing. Additive Manufacturing, 54: 102725. https://doi.org/10.1016/j.addma.2022.102725.

Sehhat, M. H., Mahdianikhotbesara, A., & Yadegari, F. 2022. Impact of Temperature and Material Variation on Mechanical Properties of Parts Fabricated with Fused Deposition Modeling (FDM) Additive Manufacturing. The International Journal of Advanced Manufacturing Technology. 120(7-8): 4791-4801. https://doi.org/10.1007/s00170-022-09043-0.

Downloads

Published

2024-08-12

Issue

Section

Science and Engineering

How to Cite

INVESTIGATION ON DIMENSIONAL ACCURACY OF ADDITIVE MANUFACTURED SAMPLES. (2024). Jurnal Teknologi (Sciences & Engineering), 86(5), 1-9. https://doi.org/10.11113/jurnalteknologi.v86.19856