ANALYSIS OF GLOBAL AND LOCAL MAXIMUM POWER POINTS IN PV ARRAYS UNDER PARTIAL SHADING CONDITION
DOI:
https://doi.org/10.11113/jurnalteknologi.v85.19871Keywords:
PV array, series-parallel configuration, total cross-tied configuration, partial shading, local maximum power point, global maximum power pointAbstract
Partial shading (PS) has a significant impact on the decrease in efficiency of photovoltaic (PV) array and performance of maximum power point tracking (MPPT) that must be addressed. We conduct an analysis and evaluation of local maximum power point (LMPP) in terms of quantity, and global maximum power point (GMPP) in terms of magnitude and diversity. Simulation is carried out using single diode ideal model and nine generic PS patterns that are specifically designed to bring up the substantial characteristics of the LMPP and GMPP and applied to series-parallel (SP) and total cross-tied (TCT) configurations. The SP configuration has LMPP with two, three, and four peaks, appearing three times each. The TCT configuration has two peaks that appear six times, three peaks that appear once, and four peaks that appear twice. The SP configuration experiences power losses ranging from 56% to 72%, while the TCT configuration has power losses ranging from 52% to 64%. The SP configuration generates a maximum voltage of 76.64 volts and a minimum of 39.20 volts, while the TCT configuration generates a maximum voltage of 77.62 volts and a minimum of 58.21 volts. With a smaller number of LMPP, a larger magnitude of GMPP parameters, and lower diversity, TCT exhibits better characteristics and performance compared to SP.
References
N. A. Windarko, M. N. Habibi, B. Sumantri, E. Prasetyono, M. Z. Efendi, and Taufik. 2021. A New MPPT Algorithm for Photovoltaic Power Generation under Uniform and Partial Shading Conditions. Energies (Basel). 14(2). Doi: 10.3390/en14020483.
M. V. Dambhare, B. Butey, and S. V. Moharil. 2021. Solar Photovoltaic Technology: A Review of Different Types of Solar Cells and Its Future Trends. Journal of Physics: Conference Series. 1913(1). Doi: 10.1088/1742-6596/1913/1/012053.
A. A. Desai and S. Mikkili. 2019. Modelling and Analysis of PV Configurations (Alternate TCT-BL, Total Cross Tied, Series, Series Parallel, Bridge Linked and Honeycomb) to Extract Maximum Power Under Partial Shading Conditions. CSEE Journal of Power and Energy Systems. 8(6). Doi: 10.17775/CSEEJPES.2020.00900.
L. A. Trejos-Grisales, J. D. Bastidas-Rodríguez, and C. A. Ramos-Paja. 2020. Mathematical Model for Regular and Irregular PV Arrays with Improved Calculation Speed. Sustainability (Switzerland). 12(24): 1-28. Doi: 10.3390/su122410684.
L. Xu, R. Cheng, and J. Yang. 2020. A New MPPT Technique for Fast and Efficient Tracking under Fast Varying Solar Irradiation and Load Resistance. International Journal of Photoenergy. 2020. Doi: 10.1155/2020/6535372.
S. Amar, M. Bahich, Y. Bentahar, M. Afifi, and E. Barj. 2021. A Study of the Temperature Influence on Different Parameters of Mono-Crystalline Silicon Photovoltaic Module. Journal of Power and Energy Engineering. 09(06): 29-42. Doi: 10.4236/jpee.2021.96003.
M. Premkumar, U. Subramaniam, T. Sudhakar Babu, R. M. Elavarasan, and L. Mihet-Popa. 2020. Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns. Energies (Basel). 13(12). Doi: 10.3390/en13123216.
M. A. Koondhar, I. A. Channa, S. Chandio, M. I. Jamali, A. S. Channa, and I. A. Laghari. 2021. Temperature and Irradiance-based Analysis the Specific Variation of PV Module. J Teknol. 83(6): 1-17. Doi: 10.11113/jurnalteknologi.v83.16609.
S. Bounouar et al. 2020. Assessment of Series Resistance Components of a Solar PV Module Depending on its Temperature Under Real Operating Conditions.
A. D. Dhass, Y. Prakash, and K. C. Ramya. 2020. Effect of Temperature on Internal Parameters of Solar Cell. Materials Today: Proceedings. 33: 732-735. Doi: 10.1016/j.matpr.2020.06.079.
M. Yesilbudak. 2021. Parameter Extraction of Photovoltaic Cells and Modules using Grey Wolf Optimizer with Dimension Learning-based Hunting Search Strategy. Energies (Basel). 14(18). Doi: 10.3390/en14185735.
S. R. Pendem, S. Mikkili, S. S. Rangarajan, S. Avv, R. E. Collins, and T. Senjyu. 2021. Optimal Hybrid PV Array Topologies to Maximize the Power Output by Reducing the Effect of Non-uniform Operating Conditions. Electronics (Switzerland). 10(23). Doi: 10.3390/electronics10233014.
A. Y. Appiah, X. Zhang, B. B. K. Ayawli, and F. Kyeremeh. 2019. Review and Performance Evaluation of Photovoltaic Array Fault Detection and Diagnosis Techniques. International Journal of Photoenergy. Hindawi Limited. Doi: 10.1155/2019/6953530.
S. R. Pendem, S. Mikkili, S. S. Rangarajan, S. Avv, R. E. Collins, and T. Senjyu. 2021. Optimal Hybrid PV Array Topologies to Maximize the Power Output by Reducing the Effect of Non-uniform Operating Conditions. Electronics (Switzerland). 10(23). Doi: 10.3390/electronics10233014.
K. Rajani and T. Ramesh. 2022. Reconfiguration of PV Arrays (T-C-T, B-L, H-C) Considering Wiring Resistance. CSEE Journal of Power and Energy Systems. 8(5): 1408-1416. Doi: 10.17775/CSEEJPES.2020.06930.
J. Gosumbonggot and G. Fujita. 2019. Global Maximum Power Point Tracking under Shading Condition and Hotspot Detection Algorithms for Photovoltaic Systems. Energies (Basel). 12(5): Doi: 10.3390/en12050882.
T. Sutikno, A. Pamungkas, G. Pau, A. Yudhana, and M. Facta. 2022. A Review of Recent Advances in Metaheuristic Maximum Power Point Tracking Algorithms for Solar Photovoltaic Systems Under the Partial-Shading Conditions. Indonesian Journal of Science and Technology. 7(1): 131-158. Doi: 10.17509/ijost.v7i1.45612.
A. Giyantara, Wisyahyadi, R. B. Rizqullah, and Y. T. Kusuma Priyanto. 2021. Analysis of Partial shading Effect on Solar Panel Power Output. Journal of Physics: Conference Series. 1726(1). Doi: 10.1088/1742-6596/1726/1/012022.
C. Huang and L. Wang. 2018. Simulation Study on the Degradation Process of Photovoltaic Modules. Energy Convers Manag. 165: 236-243. Doi: 10.1016/j.enconman.2018.03.056.
A. Bennani-Ben Abdelghani and H. ben Attia Sethom. 2020. Modeling PV Installations under Partial Shading Conditions. SN Appl Sci. 2(4). Doi: 10.1007/s42452-020-2458-0.
P. Manoharan et al. 2021. Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems,”.IEEE Syst J. 15(2): 3024-3035. Doi: 10.1109/JSYST.2020.3003255.
C. Prakash Meena. 2018. Study of Maximum Power Point Tracking (MPPT) in Solar Panels. International Journal of Science and Research. Doi: 10.21275/ART20198530.
M. A. Abo-Sennah, M. A. El-Dabah, and A. E. B. Mansour. 2021. Maximum Power Point Tracking Techniques for Photovoltaic Systems: A Comparative Study. International Journal of Electrical and Computer Engineering. 11(1): 57-73. Doi: 10.11591/ijece.v11i1.pp57-73.
S. D. Al-Majidi, M. F. Abbod, and H. S. Al-Raweshidy. 2018. A Novel Maximum Power Point Tracking Technique based on Fuzzy Logic for Photovoltaic Systems. Int J Hydrogen Energy. 43(31): 14158–14171. Doi: 10.1016/j.ijhydene.2018.06.002.
A. S. Mahdi, A. K. Mahamad, S. Saon, T. Tuwoso, H. Elmunsyah, and S. W. Mudjanarko. 2020. Maximum Power Point Tracking Using Perturb and Observe, Fuzzy Logic and ANFIS. SN Appl Sci. 2(1). Doi: 10.1007/s42452-019-1886-1.
R. K. Pachauri. 2020. Investigation on SP and TCT Photovoltaic Array Configurations under Obscured Shading Conditions. 7th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2020. Doi: 10.1109/UPCON50219.2020.9376510.
R. G. Vieira, F. M. U. de Araújo, M. Dhimish, and M. I. S. Guerra. 2020. A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules. Energies. 13(10). Doi: 10.3390/en13102472.
F. Belhachat and C. Larbes. 2015. Modeling, Analysis and Comparison of Solar Photovoltaic Array Configurations under Partial Shading Conditions. Solar Energy. 120: 399-418. Doi: 10.1016/j.solener.2015.07.039.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.