SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH SINGLE ENCASED STONE DUST COLUMNS

Authors

  • Md. Ikramul Hoque Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Malaysia
  • Muzamir Hasan Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Malaysia
  • Nusrat Jahan Mim Faculty of Civil Engineering Technology, Universiti Malaysia Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19879

Keywords:

Soft Soil, Stone dust column, Shear strength, UCS

Abstract

The application of stone columns, which can improve the overall carrying capacity of soft clay as well as lessen the settlement of buildings built on it, is among the most widespread ground improvement techniques throughout the globe. The performance of foundation beds is enhanced by their stiffness values and higher strength, which could withstand more of the load applied. Therefore, the cost of construction can be decreased by using recycled stone dust as granular material in vertical granular columns, which can then be strengthened with a singular stone dust column that is covered in geotextile for enhancing soft clay’s overall strength. A further unconfined compression test was performed on remolded specimens of soft kaolin clay measuring 50 mm in diameter and 100 mm in height and mounted with a single encapsulated stone dust column measuring 10 mm and 16 mm in diameter. Test results show that when kaolin is implanted with a single encased stone dust column that has an area replacement ratio of 10.24% and penetration ratios of 0.6, 0.8, and 1.0, the shear strength increases are 51.75%, 74.5%, and 49.20%, respectively. The equivalent shear strength increases are 48.50%, 68.50%, and 43.50% for soft soil treated with a 12.00% area replacement ratio and 0.6, 0.8, and 1.0 penetration ratios, respectively. The diameter and height of the column had an impact on the shear strength parameters, which significantly improved for both encased and non-encased stone dust columns.

References

M. Raithel and H.-G. Kempfert. 2000. Calculation Models for Dam Foundations with Geotextile Coated Sand Columns. ISRM International Symposium. OnePetro.

N. Aarthi, A. Boominathan, and S. Gandhi. 2022. Experimental Study on the Behaviour of Sand Compaction Columns in Sandy Strata. International Journal of Geotechnical Engineering. 16(5): 641-654. Doi: https://doi.org/10.1080/19386362.2019.1710391.

M. Raithel, A. Kirchner, C. Schade, and E. Leusink. 2005. Foundation of Constructions on Very Soft Soils with Geotextile Encased Columns-state of the Art. Innovations in Grouting and Soil Improvement. 1-11.

Doi: https://doi.org/10.1061/40783(162)20.

D. Alexiew, D. Brokemper, and S. Lothspeich. 2005. Geotextile Encased Columns (GEC): Load Capacity, Geotextile Selection and Pre-design Graphs. Contemporary Issues in Foundation Engineering. 1-14.

Doi: https://doi.org/10.1061/40777(156)12.

C. Yoo and S.-B. Kim. 2009. Numerical Modeling of Geosynthetic-encased Stone Column-reinforced Ground. Geosynthetics International. 16(3): 116-126.

Doi: https://doi.org/10.1680/gein.2009.16.3.116.

V. Sivakumar, D. McKelvey, J. Graham, and D. Hughes. 2004. Triaxial Tests on Model Sand Columns in Clay. Canadian Geotechnical Journal. 41(2): 299-312.

Doi: https://doi.org/10.1139/t03-097.

S. K. Dash and M. C. Bora. 2013. Influence of Geosynthetic Encasement on the Performance of Stone Columns Floating in Soft Clay. Canadian Geotechnical Journal. 50(7): 754-765. Doi: https://doi.org/10.1139/cgj-2012-0437.

M. Dheerendra Babu, S. Nayak, and R. Shivashankar. 2013. A Critical Review of Construction, Analysis and Behaviour of Stone Columns. Geotechnical and Geological Engineering. 31: 1-22. Doi: https://doi.org/10.1007/s10706-012-9555-9.

S. Murugesan and K. Rajagopal. 2007. Model Tests on Geosynthetic-encased Stone Columns. Geosynthetics International. 14(6): 346-354.

Doi: https://doi.org/10.1680/gein.2007.14.6.346.

J. Hughes, N. Withers, and D. Greenwood. 1975. A Field Trial of the Reinforcing Effect of a Stone Column in Soil. Geotechnique. 25(1): 31-44.

Doi: https://doi.org/10.1680/geot.1975.25.1.31.

B. O. Ahmed, M. Inoue, and S. Moritani. 2010. Effect of Saline Water Irrigation and Manure Application on the Available Water Content, Soil Salinity, and Growth of Wheat. Agricultural Water Management. 97(1): 165-170. Doi: https://doi.org/10.1016/j.agwat.2009.09.001.

S. Cheik, P. Jouquet, J. L. Maeght, Y. Capowiez, T. Tran, and N. Bottinelli. 2021. X‐ray Tomography Analysis of Soil Biopores Structure under Wetting and Drying Cycles. European Journal of Soil Science. 72(5): 2128-2132.

Doi: https://doi.org/10.1111/ejss.13119.

M. I. Hoque, M. H. Kabir, and T. Rahman. 2018. Engineering Properties and Cost Comparison among Sylhet Sand, Khustia Sand and Local Sand in the Context of Foundation Engineering. Journal of Advance in Geotechnical Engineering. 1(2).

R. Ilangovana, N. Mahendrana, and K. Nagamanib. 2008. Strength and Durability Properties of Concrete Containing Quarry Rock Dust as Fine Aggregate. ARPN Journal of Engineering and Applied Sciences. 3(5): 20-26,

Doi: 10.21275/24041805.

P. Van Straaten. 2006. Farming with Rocks and Minerals: Challenges and Opportunities. Anais da Academia Brasileira de Ciências. 78: 731-747.

Doi: https://doi.org/10.1590/S0001-37652006000400009.

S. Kumar and J. Stewart. 2003. Utilization of Illinois PCC Dry Bottom Ash for Compacted Landfill Barriers. Soil and Sediment Contamination. 12(3): 401-415.

Doi: https://doi.org/10.1080/713610980.

M. Hasan, K. H. Yee, M. F.-h. A. J. Pahrol, and M. Hyodo. 2019. Shear Strength of Soft Clay Reinforced with Encased Lime Bottom Ash Column (ELBAC). GEOMATE Journal. 16(57): 62-66. Doi: https://doi.org/10.21660/2019.57.4644.

R. Moradi. 2016. Physical and Numerical Modelling of Bottom Ash Columns Installed in Soft Soil. Universiti Teknologi Malaysia.

M. Hasan, W. N. W. Jusoh, W. S. Chee, and M. Hyodo. 2018. The Undrained Shear Strength of Soft Clay Reinforced with Group Encapsulated Lime Bottom Ash Columns. GEOMATE Journal. 14(46): 46-50.

Doi: https://doi.org/10.21660/2018.46.45208.

A. Marto, M. Hasan, M. Hyodo, and A. M. Makhtar. 2014. Shear Strength Parameters and Consolidation of Clay Reinforced with Single and Group Bottom Ash Columns. Arabian Journal for Science and Engineering. 39: 2641-2654. Doi: https://doi.org/10.1007/s13369-013-0933-2.

P. Das and S. K. Pal. 2013. A Study of the Behavior of Stone Column in Local Soft and Loose Layered Soil. EJGE. 18: 1777-17786.

M. Mokhtari and B. Kalantari. 2012. Soft Soil Stabilization using Stone Column--A Review. Electronic Journal of Geotechnical Engineering. 17: 1459-1466.

Y. Tandel, C. Solanki, and A. Desai. 2013. Laboratory Experimental Analysis on Encapsulated Stone Column. Archives of Civil Engineering. 359-379.

Doi: https://doi.org/10.2478/ace-2013-0020.

S. Murugesan and K. Rajagopal. 2006. Geosynthetic-encased Stone Columns: Numerical Evaluation. Geotextiles and Geomembranes. 24(6): 349-358.

Doi: https://doi.org/10.1016/j.geotexmem.2006.05.001.

V. Sivakumar and J. Black. 2007. A Laboratory Model Study of the Performance of Vibated Stone Columns in Soft Clay.

T. Maakaroun, S. S. Najjar, and S. Sadek. 2009. Effect of Sand Columns on the Load Response of Soft Clays. Contemporary Topics in Ground Modification, Problem Soils, and Geo-Support. 217-224.

Doi: https://doi.org/10.1061/41023(337)28.

S. S. Najjar, S. Sadek, and T. Maakaroun. 2010. Effect of Sand Columns on the Undrained Load Response of Soft Clays. Journal of Geotechnical and Geoenvironmental Engineering. 136(9): 1263-1277.

Doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000328.

A. Marto, N. Latifi, and H. Sohaei. 2013. Stabilization of Laterite Soil using GKS Soil Stabilizer. Electronic Journal of Geotechnical Engineering. 18(18): 521-532.

M. Najjar, A. M. Soliman, and M. L. Nehdi. 2014. Critical Overview of Two-stage Concrete: Properties and Applications. Construction and Building Materials. 62: 47-58.

Doi: https://doi.org/10.1016/j.conbuildmat.2014.03.021.

J. Fernández-Ruiz, M. Miranda, J. Castro, and L. M. Rodríguez. 2021. Improvement of the Critical Speed in High-speed Ballasted Railway Tracks with Stone Columns: A Numerical Study on Critical Length. Transportation Geotechnics. 30: 100628.

Doi: https://doi.org/10.1016/j.trgeo.2021.100628.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

SHEAR STRENGTH OF SOFT CLAY REINFORCED WITH SINGLE ENCASED STONE DUST COLUMNS. (2023). Jurnal Teknologi, 85(5), 27-34. https://doi.org/10.11113/jurnalteknologi.v85.19879