A SYSTEMATIC REVIEW ON CRITICAL FACTORS AFFECTING USABILITY OF PASSIVE LOWER-LIMB EXOSKELETON

Authors

  • Isa Halim Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Nurul Najwa Zawawi Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Muhammad Nadzirul Izzat Mahadzir Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Zulkeflee Abdullah Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Adi Saptari Hidayat Department of Industrial Engineering, President University, JI Ki Hajar Dewantara, Kota Jababeka, Cikarang Baru, Bekasi 17550, Indonesia
  • Ahmad Faizal Salleh Sports Engineering Research Centre (SERC), Centre of Excellent, Universiti Malaysia Perlis, Perlis, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v87.19888

Keywords:

Exoskeleton technology, wearable body support, ergonomic design, user-centred design

Abstract

Despite the growing interest of industrial practitioners and users in applying exoskeleton technology to augment physical strength, the usability aspect of the assistive device is still a great challenge to product designers and engineers. This paper aims to review the critical factors that affect the usability of passive lower-limb exoskeletons to improve user acceptance on the device technology. Additionally, this paper discusses the current trends, challenges, and future research directions to improve the usability aspects of the exoskeletons. The authors collected journal articles related to exoskeleton technology published from 2016 to 2023. The articles were accessed from digital databases, Scopus and Web of Science. A total of 54 articles written in English were selected for final review. Based on the literature, the authors identified seven critical factors: effectiveness, efficiency, engagement, error tolerance, ease of learning, portability, and stability, all of which have a substantial influence on the usability of a passive lower-limb exoskeleton. A mapping of associations between the seven critical factors and the System Usability Scale reveals good agreement in terms of usability assessment criteria. Product designers and engineers will undoubtedly find the new knowledge gained from this review helpful when conducting usability studies on the passive lower-limb exoskeletons.

References

Ma, Z., Liu, J., Ma, G., Gao, J., Chen, B., & Zuo, S. 2023. Lockable Lower-Limb Exoskeleton Based on a Novel Variable-Stiffness Joint: Reducing Physical Fatigue at Squatting. Journal of Mechanisms and Robotics. 15(5): 051008.

Doi: https://doi.org/10.1115/1.4055964.

Chen, B., Shi, C., Zheng, C., Zi, B., Zhao, P., & Li, Y. 2023. Development of Lower Limb Exoskeleton for Walking Assistance Using Energy Recycled from Human Knee Joint. Journal of Mechanisms and Robotics. 15(5): 051007.

Doi: https://doi.org/10.1115/1.4055936.

Tang, X., Wang, X., Ji, X., Zhou, Y., Yang, J., Wei, Y., & Zhang, W. 2022. A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement. Micromachines. 13(6): 900.

Doi: https://doi.org/10.3390/mi13060900.

Kyeong, S., Feng, J., Ryu, J. K., Park, J. J., Lee, K. H., & Kim, J. 2022. Surface Electromyography Characteristics for Motion Intention Recognition and Implementation Issues in Lower-Limb Exoskeletons. International Journal of Control, Automation and Systems. 20(3): 1018–1028.

Doi: https://doi.org/10.1007/s12555-020-0934-3.

Tu, Y., Zhu, A., Song, J., Zhang, X., & Cao, G. 2022. Design and Experimental Evaluation of a Lower-limb Exoskeleton for Assisting Workers with Motorized Tuning of Squat Heights. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 30: 184–193.

Doi: 10.1109/TNSRE.2022.3143361.

A. Moyon, E. Poirson, and J.-F. Petiot. 2019 Development of an Acceptance Model for Occupational Exoskeletons and Application for a Passive Upper Limb Device. IISE Trans Occup Ergon Hum Factors. 7(3–4): 291–301.

Doi: 10.1080/24725838.2019.1662516.

W. Blättler, H. J. Thomae, and F. Amsler. 2016. Venous Leg Symptoms in Healthy Subjects Assessed during Prolonged Standing. J Vasc Surg Venous Lymphat Disord. 4(4): 455–462.

Doi: 10.1016/j.jvsv.2016.03.002.

International Organization for Standardization. 2015. ISO 9241-11:2018 - Ergonomics of Human-system Interaction — Part 11: Usability: Definitions and Concepts. https://www.iso.org/standard/63500.html (accessed Feb. 21, 2023).

Hu, B., Liu, F., Cheng, K., Chen, W., Shan, X., & Yu, H. 2023. Stiffness Optimal Modulation of a Variable Stiffness Energy Storage Hip Exoskeleton and Experiments on its Assistance Effect. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 31: 1045–1055

Doi: 10.1109/TNSRE.2023.3236256.

Musso, M., Oliveira, A. S., & Bai, S. 2022. Modeling of a Non-Rigid Passive Exoskeleton-Mathematical Description and Musculoskeletal Simulations. Robotics. 11(6): 147.

Doi: https://doi.org/10.3390/robotics11060147.

Dežman, M., Debevec, T., Babič, J., & Gams, A. 2016. Effects of Passive Ankle Exoskeleton on Human Energy Expenditure: Pilot Evaluation. Advances in Robot Design and Intelligent Control. 491–498.

Doi: 10.1007/978-3-319-49058-8_53.

Varghese, C., Joshi, V., Waghmare, V., Nair, A., & David, A. 2016. Design and Fabrication of Exoskeleton based on Hydraulic Support. International Journal of Advanced Research. 4(3): 22–28.

Tijjani, I., Kumar, S., & Boukheddimi, M. 2022. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Applied Sciences. 12(5): 2395

Doi: https://doi.org/10.3390/app12052395.

Slucock, T. 2022. A Systematic Review of Low-cost Actuator Implementations for Lower-limb Exoskeletons: A Technical and Financial Perspective. Journal of Intelligent & Robotic Systems. 106(1): 3.

Doi: https://doi.org/10.1007/s10846-022-01695-0.

Mathew, M., Thomas, M. J., Navaneeth, M. G., Sulaiman, S., Amudhan, A. N. and Sudheer, A. P. 2023. A Systematic Review of Technological Advancements in Signal Sensing, Actuation, Control and Training Methods in Robotic Exoskeletons for Rehabilitation. Industrial Robot. 50(3): 432–455. https://doi.org/10.1108/IR-09-2022-0239.

Palazzi, E., Luzi, L., Dimo, E., Meneghetti, M., Vicario, R., Luzia, R. F., ... & Calanca, A. 2022. An Affordable Upper-limb Exoskeleton Concept for Rehabilitation Applications. Technologies. 10(1): 22.

Doi: https://doi.org/10.3390/technologies10010022.

L. Morris, R. S. Diteesawat, N. Rahman, A. Turton, M. Cramp, and J. Rossiter. 2023. The-state-of-the-art of Soft Robotics to Assist Mobility: A Review of Physiotherapist and Patient Identified Limitations of Current Lower-limb Exoskeletons and the Potential Soft-robotic Solutions. J Neuroeng Rehabil. 20(1): 18.

Doi: 10.1186/s12984-022-01122-3.

D. Wang, X. Gu, W. Li, Y. Jin, M. Yang, and H. Yu. 2023. Evaluation of Safety-related Performance of Wearable Lower Limb Exoskeleton Robot (WLLER): A Systematic Review. Rob Auton Syst. 160.

Doi: 10.1016/j.robot.2022.104308.

I. Halim et al. 2022. Critical Factors Influencing User Experience on Passive Exoskeleton Application: A Review. International Journal of Integrated Engineering. 14(4): 89–115

Doi: 10.30880/ijie.2022.14.04.009.

R. Baud, A. R. Manzoori, A. Ijspeert, and M. Bouri. 2021. Review of Control Strategies for Lower-limb Exoskeletons to Assist Gait. J Neuroeng Rehabil. 18(1).

Doi: 10.1186/s12984-021-00906-3.

A. Rodríguez-Fernández, J. Lobo-Prat, and J. M. Font-Llagunes. 2021. Systematic Review on Wearable Lower-limb Exoskeletons for Gait Training in Neuromuscular Impairments. J Neuroeng Rehabil. 18(1).

Doi: 10.1186/s12984-021-00815-5.

M. F. Hamza, R. A. R. Ghazilla, B. B. Muhammad, and H. J. Yap. 2020. Balance and Stability Issues in lower Extremity Exoskeletons: A Systematic Review. Biocybern Biomed Eng. 40(4): 1666–1679

Doi: 10.1016/j.bbe.2020.09.004.

N. S. S. Sanjeevi, Y. Singh, and V. Vashista. 2021. Recent Advances in Lower-extremity Exoskeletons in Promoting Performance Restoration. Curr Opin Biomed Eng. 20.

Doi: 10.1016/j.cobme.2021.100338.

T. McFarland and S. Fischer. 2019. Considerations for Industrial Use: A Systematic Review of the Impact of Active and Passive Upper Limb Exoskeletons on Physical Exposures. IISE Trans Occup Ergon Hum Factors. 7(3–4): 322–347

Doi: 10.1080/24725838.2019.1684399.

M. D. C. Sanchez-Villamañan, J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons. 2019. Compliant Lower Limb Exoskeletons: A Comprehensive Review on Mechanical Design Principles. J Neuroeng Rehabil. 16(1).

Doi: 10.1186/s12984-019-0517-9.

Y. He, D. Eguren, T. P. Luu, and J. L. Contreras-Vidal. 2017. Risk Management and regulations for Lower Limb Medical Exoskeletons: A Review. Medical Devices: Evidence and Research. 10: 89–107

Doi: 10.2147/mder.s107134.

A. Wallisch, O. Sankowski, D. Krause, and K. Paetzold. 2019. Overcoming Fuzzy Design Practice: Revealing Potentials of User-centered Design Research and Methodological Concepts Related to User Involvement. 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). 2019.

Doi: 10.1109/ICE.2019.8792591.

V. Power et al. 2016. Exploring User Requirements for a Lower Body Soft Exoskeleton to Assist Mobility. ACM International Conference Proceeding Series. 29-June-2016.

Doi: 10.1145/2910674.2935827.

A. Bateman et al. 2018. A User-centered Design and Analysis of an Electrostatic Haptic Touchscreen System for Students with Visual Impairments. International Journal of Human Computer Studies. 109: 102–111

Doi: 10.1016/j.ijhcs.2017.09.004.

A. Pinandito, H. M. Az-Zahra, L. Fanani, and A. V. Putri. 2017. Analysis of Web Content Delivery Effectiveness and Efficiency in Responsive Web Design Using Material Design Guidelines and User Centered Design. 2017 International Conference on Sustainable Information Engineering and Technology (SIET).

Doi: 10.1109/SIET.2017.8304178.

D. R. Luna, D. A. Rizzato Lede, C. M. Otero, M. R. Risk, and F. González Bernaldo de Quirós. 2017. User-centered Design Improves the Usability of Drug-drug Interaction Alerts: Experimental Comparison of Interfaces. J Biomed Inform. 66: 204–213

Doi: 10.1016/j.jbi.2017.01.009.

E. Kim et al. 2022. User-centered Design Roadmapping: Anchoring Roadmapping in Customer Value before Technology Selection. IEEE Trans Eng Manag. 69(1): 109–126.

Doi: 10.1109/TEM.2020.3030172.

J. Calvillo-Arbizu et al., 2019. User-centred Design for Developing e-Health System for Renal Patients at Home (AppNephro). Int J Med Inform. 125: 47–54

Doi: 10.1016/j.ijmedinf.2019.02.007.

L. M. Kopf and J. Huh-Yoo. 2023. A User-centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention. Journal of Voice. 37(1): 48–59

Doi: 10.1016/j.jvoice.2020.10.015.

M. A. Adli and D. P. Lestari. 2017. Designing an Arisan Mobile Application for Novice Users using User-centered Design Approach. 2017 International Conference on Advance Information, Concept, Theory and Application (ICAICTA).

Doi: 10.1109/ICAICTA.2017.8090956.

P. M. A. Desmet, H. Xue, and S. F. Fokkinga. 2019. The Same Person is Never the Same: Introducing Mood-Stimulated Thought/Action Tendencies for User-centered Design. She Ji. 5(3): 167–187

Doi: 10.1016/j.sheji.2019.07.001.

S. Abdelnour, C. Pemberton-Pigott, and D. Deichmann. 2020. Clean Cooking Interventions: Towards User-centred Contexts of Use Design. Energy Res Soc Sci. 70.

Doi: 10.1016/j.erss.2020.101758.

W. Qi and L. Zhou. 2019. User-centered Wearable Product Design for Community Elderly Care. 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI).

Doi: 10.1109/CISP-BMEI48845.2019.8965947.

X. He, H. Zhang, and J. Bian. 2020. User-centered Design of a Web-based Crowdsourcing-integrated Semantic Text Annotation Tool for Building a Mental Health Knowledge Base. J Biomed Inform. 110.

Doi: 10.1016/j.jbi.2020.103571.

R. Alturki and V. Gay. 2017. Usability Testing of Fitness Mobile Application : Methodology and Quantitative Results. 7th InternaConference on Computer Science, Engineering & Applications. Sep. 2017. 97–114.

Doi: 10.5121/csit.2017.71108.

A. M. Stewart, C. G. Pretty, M. Adams, and X. Q. Chen. 2017. Review of Upper Limb Hybrid Exoskeletons. IFAC-PapersOnLine. 50(1): 15169–15178.

Doi: 10.1016/j.ifacol.2017.08.2266.

N. Bevan, J. Carter, J. Earthy, T. Geis, and S. Harker. 2016 New ISO Standards for Usability, Usability Reports and Usability Measures. International Conference on Human-Computer Interaction. 9731: 268–278.

Doi: 10.1007/978-3-319-39510-4_25.

I. Abuqaddom, H. Alazzam, A. Hudaib, and F. Al-Zaghoul. 2019. A Measurable Website Usability Model: Case Study University of Jordan. 2019 10th International Conference on Information and Communication Systems (ICICS).

Doi: 10.1109/IACS.2019.8809145.

J. N. Voigt-Antons, T. Hobfeld, S. Egger-Lampl, R. Schatz, and S. Moller. 2018. User Experience of Web Browsing-The Relationship of Usability and Quality of Experience. 2018 10th International Conference on Quality of Multimedia Experience, QoMEX 2018. Sep. 2018.

Doi: 10.1109/QoMEX.2018.8463383.

R. Hensel and M. Keil. 2019. Subjective Evaluation of a Passive Industrial Exoskeleton for Lower-back Support: A Field Study in the Automotive Sector. IISE Trans Occup Ergon Hum Factors. 7(3–4): 213–221.

Doi: 10.1080/24725838.2019.1573770.

K. Huysamen, M. de Looze, T. Bosch, J. Ortiz, S. Toxiri, and L. W. O’Sullivan. 2018. Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks. Appl Ergon. 68: 125–131.

Doi: 10.1016/j.apergo.2017.11.004.

J. T. Meyer, S. O. Schrade, O. Lambercy, and R. Gassert. 2019. User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users; User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019.

Doi: 10.0/Linux-x86_64.

Y. L. Tsai et al. 2019. Usability Assessment of a Cable-driven Exoskeletal Robot for Hand Rehabilitation. Front Neurorobot. 13.

Doi: 10.3389/fnbot.2019.00003.

T. Kim. 2020. Factors Influencing Usability of Rehabilitation Robotic Devices for Lower Limbs. Sustainability (Switzerland). 12(2)

Doi: 10.3390/su12020598.

M. Almenara et al. 2017. Usability Test of a Hand Exoskeleton for Activities of Daily Living: An Example of User-centered Design. Disabil Rehabil Assist Technol. 12(1): 84–96.

Doi: 10.3109/17483107.2015.1079653.

J. Han, D. J. Hyun, K. Jung, K. Y. Kim, and S. Youn. 2018. Ergonomic Design Strategy for Crutches of a Lower-limb Exoskeleton for Paraplegic Individuals: An Experimental Study. Proceedings of the Human Factors and Ergonomics Society. 2: 1012–1016.

Doi: 10.1177/1541931218621233.

V. Lajeunesse, F. Routhier, C. Vincent, J. Lettre, and F. Michaud. 2018. Perspectives of Individuals with Incomplete Spinal Cord Injury Concerning the Usability of Lower Limb Exoskeletons: An Exploratory Study. Technol Disabil. 30(1–2): 63–76.

Doi: 10.3233/TAD-180195.

A. Sonderegger, S. Schmutz, and J. Sauer. 2016. The Influence of Age in Usability Testing. Appl Ergon. 52: 291–300. Doi: 10.1016/j.apergo.2015.06.012.

L. E. Miller, A. K. Zimmermann, and W. G. Herbert. 2016. Clinical Effectiveness and Safety of Powered Exoskeleton-Assisted Walking in Patients with Spinal Cord Injury: Systematic Review with Meta-analysis. Medical Devices: Evidence and Research. 9: 455–466.

Doi: 10.2147/MDER.S103102.

I. Babik, E. Kokkoni, A. B. Cunha, J. C. Galloway, T. Rahman, and M. A. Lobo. 2016. Feasibility and Effectiveness of a Novel Exoskeleton for an Infant with Arm Movement Impairments. Pediatric Physical Therapy. 28(3): 338–346

Doi: 10.1097/PEP.0000000000000271.

T. Schmalz et al. 2019. Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. Int J Environ Res Public Health. 16(23).

Doi: 10.3390/ijerph16234792.

C. di Natali et al. 2021. Equivalent Weight: Connecting Exoskeleton Effectiveness with Ergonomic Risk during Manual Material Handling. Int J Environ Res Public Health. 18(5): 1–25.

Doi: 10.3390/ijerph18052677.

A. Chowdhury et al. 2018. Active Physical Practice Followed by Mental Practice Using BCI-Driven Hand Exoskeleton: A Pilot Trial for Clinical Effectiveness and Usability. IEEE J Biomed Health Inform. 22(6): 1786–1795.

Doi: 10.1109/JBHI.2018.2863212.

H. J. Kim, D. H. Lim, W. S. Kim, and C. S. Han. 2020. Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace. International Journal of Precision Engineering and Manufacturing. 21(2): 227–236.

Doi: 10.1007/s12541-019-00217-7.

R. Alturki and V. Gay. 2019. Usability Attributes for Mobile Applications: A Systematic Review. EAI/Springer Innovations in Communication and Computing. 53–62.

Doi: 10.1007/978-3-319-99966-1_5/COVER.

F. Rangraz Jeddi, E. Nabovati, R. Bigham, and R. Khajouei. 2019. Usability Evaluation of a Comprehensive National Health Information System: Relationship of Quality Components to Users’ Characteristics. Int J Med Inform. 133.

Doi: 10.1016/j.ijmedinf.2019.104026.

E. Martini et al. 2019. Gait Training using a Robotic Hip Exoskeleton Improves Metabolic Gait Efficiency in the Elderly. Sci Rep. 9(1)

Doi: 10.1038/s41598-019-43628-2.

A. Omoniyi, C. Trask, S. Milosavljevic, and O. Thamsuwan. 2020. Farmers’ Perceptions of Exoskeleton Use on Farms: Finding the Right Tool for the Work(er). Int J Ind Ergon. 80.

Doi: 10.1016/j.ergon.2020.103036.

T. Maricarmen. 2018. Five Usability Factors that Make Products Usable by Maricarmen Terán SymSoft Solutions Medium. https://medium.com/symsoft/five-usability-factors-that-make-products-usable-573657edc9f2 (accessed Feb. 21, 2023).

I. Kagirov et al. 2021. Medical exoskeleton ‘Remotion’ with an intelligent control system: Modeling, implementation, and testing. Simul Model Pract Theory. 107.

DOI: 10.1016/j.simpat.2020.102200.

A. S. Koopman et al., 2020. Biomechanical evaluation of a New Passive Back Support Exoskeleton. J Biomech. 105.

Doi: 10.1016/j.jbiomech.2020.109795.

D. Ippolito, C. Constantinescu, and C. A. Rusu. 2020. Enhancement of Human-centered Workplace Design and Optimization with Exoskeleton Technology. Procedia CIRP. 91: 243–248.

Doi: 10.1016/j.procir.2020.02.173.

J. Li, Q. Cao, M. Dong, and C. Zhang. 2021. Compatibility Evaluation of a 4-DOF Ergonomic Exoskeleton for Upper Limb Rehabilitation. Mech Mach Theory. 156.

Doi: 10.1016/j.mechmachtheory.2020.104146.

L. C. Chi, M. Copotoiu, and L. Moldovan. 2020. Different Types of Exoskeletons Can Improve the Life of Spinal Cord Injury’s Patients - A Meta-analysis. Procedia Manufacturing. 46: 844–849.

Doi: 10.1016/j.promfg.2020.04.014.

N. Naghavi, A. Akbarzadeh, S. M. Tahamipour-Z., and I. Kardan. 2020. Assist-As-Needed Control of a Hip Exoskeleton based on a Novel Strength Index. Rob Auton Syst. 134.

Doi: 10.1016/j.robot.2020.103667.

N. Masud, P. Mattsson, C. Smith, and M. Isaksson. 2020. On Stability and Performance of Disturbance Observer-based-Dynamic Load Torque Compensator for Assistive Exoskeleton: A Hybrid Approach. Mechatronics. 69.

Doi: 10.1016/j.mechatronics.2020.102373.

J. D. Sanjuan et al. 2020. Cable Driven Exoskeleton for Upper-limb Rehabilitation: A Design Review. Rob Auton Syst. 126.

Doi: 10.1016/j.robot.2020.103445.

M. Shafiei and S. Behzadipour. 2020. Adding Backlash to the Connection Elements Can Improve the Performance of a Robotic Exoskeleton. Mech Mach Theory. 152.

Doi: 10.1016/j.mechmachtheory.2020.103937.

L. Zhou, W. Chen, W. Chen, S. Bai, J. Zhang, and J. Wang. 2020. Design of a Passive Lower Limb Exoskeleton for Walking Assistance with Gravity Compensation. Mech Mach Theory. 150.

Doi: 10.1016/j.mechmachtheory.2020.103840.

S. McLellan, A. Muddiner, and S. C. Peres. The Effect of Experience on System Usability Scale Ratings. J Usability Stud. 7(2): 56–67. [Online]. Available: https://www.researchgate.net/publication/267411691.

M. K. Ishmael, D. Archangeli, and T. Lenzi. 2022. A Powered Hip Exoskeleton with High Torque Density for Walking, Running, and Stair Ascent. IEEE/ASME Transactions on Mechatronics. 27(6): 4561–4572.

Doi: 10.1109/TMECH.2022.3159506.

S. v. Sarkisian, M. K. Ishmael, and T. Lenzi. 2021. Self-Aligning Mechanism Improves Comfort and Performance with a Powered Knee Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 29: 629–640.

Doi: 10.1109/TNSRE.2021.3064463.

T. Poliero et al. 2021. Versatile and Non-versatile Occupational Back-support Exoskeletons: A Comparison in Laboratory and Field Studies. Wearable Technologies. 2.

Doi: 10.1017/wtc.2021.9.

Y. Zhu, E. B. Weston, R. K. Mehta, and W. S. Marras. 2021. Neural and Biomechanical Tradeoffs Associated with Human-exoskeleton Interactions. Appl Ergon. 96.

Doi: 10.1016/j.apergo.2021.103494.

S. Jacob et al. 2021. AI and IoT-Enabled Smart Exoskeleton System for Rehabilitation of Paralyzed People in Connected Communities. IEEE Access. 9: 80340–80350.

Doi: 10.1109/ACCESS.2021.3083093.

Published

2025-03-12

Issue

Section

Science and Engineering

How to Cite

A SYSTEMATIC REVIEW ON CRITICAL FACTORS AFFECTING USABILITY OF PASSIVE LOWER-LIMB EXOSKELETON. (2025). Jurnal Teknologi (Sciences & Engineering), 87(3). https://doi.org/10.11113/jurnalteknologi.v87.19888