AMBIENT TEMPERATURE EFFECT ON SILICON PHOTOVOLTAICS UNDER SIMULATED ENVIRONMENTS

Authors

  • Turkistani Abdulaziz Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia
  • Kah-Yoong Chan Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia https://orcid.org/0000-0003-1076-5034
  • Gregory Soon How Thien Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia https://orcid.org/0000-0002-5525-6631
  • Chun-Lim Siow Centre for Electric Energy and Automation, Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia https://orcid.org/0000-0003-2353-0103
  • Boon Kar Yap ᶜElectronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia ᵈInstitute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia ᵉInternational School of Advanced Materials, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, Guangdong, PR China https://orcid.org/0000-0002-3010-5087
  • Ab Rahman Marlinda Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603, Kuala Lumpur, Malaysia https://orcid.org/0000-0001-5743-7164

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20041

Keywords:

Solar energy, monocrystalline silicon, polycrystalline silicon, amorphous silicon, ambient temperature, photovoltaics

Abstract

Solar energy is a significant renewable source for home and commercial applications. These solar technologies behave differently depending on the ambient temperature surrounding the devices. Thus, the varying ambient temperature necessitates research into the efficacy of various solar technologies under real-life circumstances. In this study, three types of solar technology were studied, which were polycrystalline, monocrystalline, and amorphous silicon photovoltaics (PVs). All the PVs were tested under various simulated environments (hot, room, and cold temperatures). Additionally, real environmental condition tests under direct sunlight successfully depicted the relationship between solar irradiance and ambient temperature on the PVs. Overall, monocrystalline PV outperformed polycrystalline PV, whereas amorphous PV performed poorly. This observation was evident in the lowest performance reduction of monocrystalline PV in hot (power, Ppv = 37%), room (Ppv = 82%), cold (Ppv = 95%), and direct sunlight (Ppv = 72%) conditions. Hence, this research could address the importance of selecting PVs in real-life environments in producing efficient solar PV technologies.

References

A. Zekry. 2020. A Road Map for Transformation from Conventional to Photovoltaic Energy Generation and Its Challenges. J. King Saud Univ. - Eng. Sci. 32(7): 407-410. Doi: 10.1016/j.jksues.2020.09.009.

J. M. Kephart, A. Kindvall, D. Williams, D. Kuciauskas, P. Dippo, A. Munshi, W. S. Sampath. 2018. Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics, IEEE J. Photovoltaics. 8(2): 587-593. Doi: 10.1109/JPHOTOV.2017.2787021.

G. S. Thirunavukkarasu, M. Seyedmahmoudian, J. Chandran, A. Stojcevski, M. Subramanian, R. Marnadu, S. Alfaify, M. Shkir. 2021. Optimisation of Monocrystalline Silicon Solar Cell Devices Using PC1D Simulation. Energies. 14(16): 4986. Doi: 10.3390/en14164986.

R. Sagar,A. Rao. 2021. Nanoscale TiO2 and Ta2O5 as Efficient Antireflection Coatings on Commercial Monocrystalline Silicon Solar Cell. J. Alloys Compd. 862: 158464. Doi: 10.1016/j.jallcom.2020.158464.

D. M. Fébba, R. M. Rubinger, A. F. Oliveira, E. C. Bortoni, 2018. Impacts of Temperature and Irradiance on Polycrystalline Silicon Solar Cells Parameters. Sol. Energy. 174: 628-639. Doi: 10.1016/j.solener.2018.09.051.

S. Garud, C. T. Trinh, D. Abou-Ras, B. Stannowski, R. Schlatmann, B. Rech, D. Amkreutz, 2020. Toward High Solar Cell Efficiency with Low Material Usage: 15% Efficiency with 14 μm Polycrystalline Silicon on Glass. Sol. RRL. 4(6): 2000058. Doi: 10.1002/solr.202000058.

H. Park, Y. Lee, S. J. Park, S. Bae, S. Kim, D. Oh, J. Park, Y. Kim, H. Guim, Y. Kang, H.-S. Lee, D. Kim, J. Yi. 2019. Tunnel Oxide Passivating Electron Contacts for High‐efficiency n‐type Silicon Solar Cells with Amorphous Silicon Passivating Hole Contacts. Prog. Photovoltaics Res. Appl. 27(12): 1104-. Doi: 10.1002/pip.3190.

Y. Hao, W. Yang, L. Zhang, R. Jiang, E. Mijangos, Y. Saygili, L. Hammarström, A. Hagfeldt, G. Boschloo. 2016. A Small Electron Donor in Cobalt Complex Electrolyte Significantly Improves Efficiency in Dye-sensitised Solar Cells. Nat. Commun. 7(1): 13934. Doi: 10.1038/ncomms13934.

D. Rachmat, R. Syarifah, I. Paramudita, N. Fadhilah, M. H. Haekal, R. A. Wahyuono, R. Hidayat, R. Zakaria, V. Suendo, D. D. Risanti. 2021. Au-doped Mesoporous SiO2 Scattering Layer Enhances Light Harvesting in Quasi Solid-state Dye-sensitised Solar Cells. J. King Saud Univ. - Eng. Sci. Doi: 10.1016/j.jksues.2021.07.007.

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto. 2019. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%. IEEE J. Photovoltaics. 9(6): 1863-1867. Doi: 10.1109/JPHOTOV.2019.2937218.

W. Septina, C. P. Muzzillo, C. L. Perkins, A. C. Giovanelli, T. West, K. K. Ohtaki, H. A. Ishii, J. P. Bradley, K. Zhu, N. Gaillard. 2021. In situ Al2O3 Incorporation Enhances the Efficiency of CuIn(S,Se)2 Solar Cells Prepared from Molecular-ink Solutions, J. Mater. Chem. A. 9(16): 10419-10426. Doi: 10.1039/D1TA00768H.

G. T. S. How, N. A. Talik, B. K. Yap, H. Nakajima, S. Tunmee, B. T. Goh. 2019. Multiple Resistive Switching Behaviours of CH3 NH3 PbI3 Perovskite Film with Different Metal Electrodes. Appl. Surf. Sci. 473(October 2018): 194-202. Doi: 10.1016/j.apsusc.2018.12.124.

M. A. Green. 2009. The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution. Prog. Photovoltaics Res. Appl. 17(3): 183-189. Doi: 10.1002/pip.892.

T. Saga. 2010. Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Mater. 2(3): 96-102. Doi: 10.1038/asiamat.2010.82.

K. L. Chopra, P. D. Paulson, V. Dutta. 2004. Thin-film Solar Cells: An Overview. Prog. Photovoltaics Res. Appl. 12(23): 69-92. Doi: 10.1002/pip.541.

M. Chaichan, H. A. Kazem. 2016. Experimental Analysis of Solar Intensity on Photovoltaic in Hot and Humid Weather Conditions. Int. J. Sci. Eng. Res. 7: 91-96.

K. Akhmad, A. Kitamura, F. Yamamoto, H. Okamoto, H. Takakura, Y. Hamakawa. 1997. Outdoor Performance of Amorphous Silicon and Polycrystalline Silicon PV Modules. Sol. Energy Mater. Sol. Cells. 46(3): 209-218. Doi: 10.1016/S0927-0248(97)00003-2.

N. Amin, C. W. Lung, K. Sopian. 2009. A Practical Field Study of Various Solar Cells on Their Performance in Malaysia. Renew. Energy. 34(8): 1939-1946. Doi: 10.1016/j.renene.2008.12.005.

A. Q. Malik, S. J. B. H. Damit. 2003. Outdoor Testing of Single Crystal Silicon Solar Cells. Renew. Energy. 28(9): 1433-1445. Doi: 10.1016/S0960-1481(02)00255-0.

W. Tress, K. Domanski, B. Carlsen, A. Agarwalla, E. A. Alharbi, M. Graetzel, A. Hagfeldt. 2019. Performance of Perovskite Solar Cells under Simulated Temperature-illumination Real-world Operating Conditions. Nat. Energy. 4(7): 568-574. Doi: 10.1038/s41560-019-0400-8.

C. Xiao, X. Yu, D. Yang, D. Que. 2014. Impact of Solar Irradiance Intensity and Temperature on the Performance of Compensated Crystalline Silicon Solar Cells. Sol. Energy Mater. Sol. Cells. 128: 427-434 Doi: 10.1016/j.solmat.2014.06.018.

A. Almuwailhi, O. Zeitoun. 2021. Investigating the Cooling of Solar Photovoltaic Modules under the Conditions of Riyadh. J. King Saud Univ. - Eng. Sci. Doi: 10.1016/j.jksues.2021.03.007.

J. Adeeb, A. Farhan, A. Al-Salaymeh. 2019. Temperature Effect on Performance of Different Solar Cell Technologies. J. Ecol. Eng. 20(5).

G. Juška, K. Genevičius, N. Nekrašas, G. Sliaužys. 2010. Charge Carrier Transport, Recombination, and Trapping in Organic Solar Cells Studied by Double Injection Technique. IEEE J. Sel. Top. Quantum Electron. 16(6): 1764-1769. Doi: 10.1109/JSTQE.2010.2041752.

A. M. Smith, S. Nie. 2010. Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 43(2): 190-200.

X. Deng, X. Liao, S. Han, H. Povolny, P. Agarwal. 2000. Amorphous Silicon and Silicon Germanium Materials for High-efficiency Triple-junction Solar Cells. Sol. Energy Mater. Sol. Cells. 62(1-2): 89-95.

H. Hashigami, Y. Itakura, T. Saitoh. 2003. Effect of Illumination Conditions on Czochralski-grown Silicon Solar Cell Degradation. J. Appl. Phys. 93(7): 4240-4245. Doi: 10.1063/1.1559430.

N. S. Baghel, N. Chander. 2022. Performance Comparison of Mono and Polycrystalline Silicon Solar Photovoltaic Modules under Tropical Wet and Dry Climatic Conditions in East-central India. Clean Energy. 6(1): 165-177. Doi: 10.1093/ce/zkac001.

T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza. 2016. Carrier Trapping and Recombination: the Role of Defect Physics in Enhancing the Open Circuit Voltage of Metal Halide Perovskite Solar Cells. Energy Environ. Sci. 9(11): 3472-3481. Doi: 10.1039/C6EE01729K.

F. Feldmann, G. Nogay, P. Löper, D. L. Young, B. G. Lee, P. Stradins, M. Hermle, S. W. Glunz. 2018. Charge Carrier Transport Mechanisms of Passivating Contacts Studied by Temperature-dependent J-V Measurements. Sol. Energy Mater. Sol. Cells. 178: 15-19. Doi: 10.1016/j.solmat.2018.01.008.

E. Schiff. 2003. Low-mobility Solar Cells: A Device Physics Primer with Application to Amorphous Silicon. Sol. Energy Mater. Sol. Cells. 78(1-4): 567-595. Doi: 10.1016/S0927-0248(02)00452-X.

M. Filipič, Z. C. Holman, F. Smole, S. De Wolf, C. Ballif, M. Topič. 2013. Analysis of Lateral Transport through the Inversion Layer in Amorphous Silicon/crystalline silicon Heterojunction Solar Cells. J. Appl. Phys. 114(7): 074504. Doi: 10.1063/1.4818709.

N. Aoun, K. Bouchouicha, R. Chenni. 2016. Performance Evaluation of a Monocrystalline Photovoltaic Module Under Different Weather and Sky Conditions. Int. J. Renew. Energy Res. 7: 292-297.

B. Wang, G. M. Biesold, M. Zhang, Z. Lin. 2021. Amorphous Inorganic Semiconductors for the Development of Solar Cell, Photoelectrocatalytic and Photocatalytic Applications. Chem. Soc. Rev. 50(12): 6914-6949. Doi: 10.1039/D0CS01134G.

H. Biermann, M. Strehler, H. Mughrabi. 1996. High-temperature Measurements of Lattice Parameters and Internal Stresses of a Creep-deformed monocrystalline Nickel-base Superalloy. Metall. Mater. Trans. A. 27(4): 1003-1014. Doi: 10.1007/BF02649768.

F. Bayrak, H. F. Oztop, F. Selimefendigil. 2019. Effects of Different Fin Parameters on Temperature and Efficiency for Cooling of Photovoltaic Panels under Natural Convection. Sol. Energy. 188: 484-494. Doi: 10.1016/j.solener.2019.06.036.

S. K. Yadav, U. Bajpai. 2018. Performance Evaluation of a Rooftop Solar Photovoltaic Power Plant in Northern India, Energy Sustain. Dev. 43: 130-138z. Doi: 10.1016/j.esd.2018.01.006.

Downloads

Published

2023-09-17

Issue

Section

Science and Engineering

How to Cite

AMBIENT TEMPERATURE EFFECT ON SILICON PHOTOVOLTAICS UNDER SIMULATED ENVIRONMENTS. (2023). Jurnal Teknologi, 85(6), 95-103. https://doi.org/10.11113/jurnalteknologi.v85.20041