KESAN PENGISI TITANIUM DIOKSIDA DALAM MEMBRAN KOMPOSIT POLIBENZIMIDAZOL-GRAFIN OKSIDA BERSULFONAT BAGI APLIKASI PEMFC BERSUHU TINGGI
THE EFFECT OF TITANIUM DIOXIDE FILLER IN POLYBENZIMIDAZOLE-SULFONATED GRAPHENE OXIDE COMPOSITE MEMBRANE FOR HIGH-TEMPERATURE PEMFC APPLICATIONS
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.20075Keywords:
Polybenzimidazole, sulfonated graphene oxide, titanium dioxide, HT-PEMFCAbstract
The polybenzimidazole (PBI) membrane shows significant potential as an alternative membrane for high-temperature PEMFC. However, PBI membranes exhibit low proton conductivities under low humidity conditions and have drawbacks related to acid leaking and phosphoric acid degradation over 160°C. Notably, metal oxide particles exhibit a strong affinity for phosphoric acid. Therefore, titanium dioxide (TiO2) was introduced to investigate its impact on self-humidified PBI-SGO membrane at different mass ratios, utilizing a sonication technique. The hygroscopic properties of TiO2 on PBI-SGO composite membranes are tested for proton conductivity at varied temperatures (25-150 °C), acid doping levels, as well as ion exchange capacity to evaluate their potential as an electrolyte for high-temperature PEMFC application. The PBI-SGO-TiO2 with the mass ratio of 2:1.5 exhibited the highest proton conductivity (0.0128 S cm-1 at 25 ⁰C and 0.0207 S cm-1 at 150 ⁰C) and achieves a higher level of acid doping level and ion exchange capacity with a value of 10.23 ADL and 1.72 mmol g-1, respectively. The composite membranes are also physically characterized by using FTIR, XRD, and FESEM. The PBI-SGO-TiO2 (2:1.5) displayed a good distribution of TiO2 powder, thus contributing to the maximum proton conductivity value. The results of the study prove that the PBI-SGO-TiO2 composite membrane is a potential membrane for applications in HT-PEMFC.
References
Yusoff, Norazriena, Swadi Vijay Kumar, Perumal Rameshkumar, Alagarsamy Pandikumar, Muhammad Mehmood Shahid, Marlinda Ab Rahman, and Nay Ming Huang. 2016. A Facile Preparation of Titanium Dioxide-iron oxide@ Silicon Dioxide Incorporated Reduced Graphene Oxide Nanohybrid for Electrooxidation of Methanol in Alkaline Medium. Electrochimica Acta. 192: 167-176.
Doi: https://doi.org/10.1016/j.electacta.2016.01.190.
Deng, Yuming, Gang Wang, Ming Ming Fei, Xin Huang, Jigui Cheng, Xiaoteng Liu, Lei Xing, Keith Scott, and Chenxi Xu. 2016. A Polybenzimidazole/Graphite Oxide based Three Layer Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells. RSC Advances. 6(76): 72224-72229.
Doi: https://doi.org/10.1039/C6RA11307A.
Holmberg, B. A., Wang, X., & Yan, Y. 2008. Nanocomposite Fuel Cell Membranes based on Nafion and Acid Functionalized Zeolite Beta Nanocrystals. Journal of Membrane Science. 320(1-2): 86-92.
Doi: https://doi.org/10.1016/j.memsci.2008.03.060.
Di Vona, M. L., & Knauth, P. 2013. Sulfonated Aromatic Polymers as Proton-conducting Solid Electrolytes for Fuel Cells: A Short Review. Zeitschrift für Physikalische Chemie. 227(5): 595-614.
Doi: https://doi.org/10.1524/zpch.2013.0337.
Di Vona, M. L., Sgreccia, E., Narducci, R., Pasquini, L., Hou, H., & Knauth, P. 2014. Stabilized Sulfonated Aromatic Polymers by In Situ Solvothermal Cross-Linking. Frontiers in Energy Research. 2: 39.
Doi: https://doi.org/10.3389/fenrg.2014.00039.
Imran, M. A., He, G., Wu, X., Yan, X., Li, T., & Khan, A. S. 2019. Fabrication and Characterization of Sulfonated Polybenzimidazole/sulfonated Imidized Graphene Oxide Hybrid Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Applied Polymer Science. 136(34): 47892.
Doi: https://doi.org/10.1002/app.47892.
Yue, Z., Cai, Y. B., & Xu, S. 2014. Facile Synthesis of a Symmetrical Diamine Containing Bis-benzimidazole Ring and its Thermally Stable Polyimides. Journal of Polymer Research. 21: 1-8.
Doi: https://doi.org/10.1007/s10965-014-0463-y.
Scherer, G. G. (Ed.). 2008. Fuel Cells I. 215. Springer.
Doi: https://doi.org/10.1007/978-3-540-69765-7.
Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. 2011. Composite Materials based on Polybenzimidazole and Inorganic Oxides. Solid State Ionics. 188(1): 132-134.
Doi: https://doi.org/10.1016/j.ssi.2010.10.010.
Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. 2015. Polybenzimidazole/strontium Cerate Nanocomposites with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature. Electrochimica Acta. 154: 370-378.
Doi: https://doi.org/10.1016/j.electacta.2014.12.025.
Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. 2015. Fabrication BaZrO3/PBI-based Nanocomposite as a New Proton Conducting Membrane for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 276: 62-72.
Doi: https://doi.org/10.1016/j.jpowsour.2014.11.083.
Huang, L., Zhu, P., Li, G., Lu, D. D., Sun, R., & Wong, C. 2014. Core–shell SiO 2@ RGO Hybrids for Epoxy Composites with Low Percolation Threshold and Enhanced Thermo-mechanical Properties. Journal of Materials Chemistry A. 2(43): 18246-18255.
Doi: https://doi.org/10.1039/C4TA03702B.
Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. 2015. Fabrication BaZrO3/PBI-based Nanocomposite as a New Proton Conducting Membrane for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 276: 62-72.
Doi: https://doi.org/10.1016/j.jpowsour.2014.11.083.
Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. 2017. Development of Polybenzimidazole/graphene Oxide Composite Membranes for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2636-2647.
Doi: https://doi.org/10.1016/j.ijhydene.2016.07.009.
Xu, C., Liu, X., Cheng, J., & Scott, K. 2015. A Polybenzimidazole/ionic-liquid-graphite-oxide Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources. 274: 922-927.
Doi: https://doi.org/10.1016/j.jpowsour.2014.10.134.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321(5887): 385-388.
Doi: https://doi.org/10.1126/science.1157996.
Wang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. 2011. Graphene Oxide/polybenzimidazole Composites Fabricated by a Solvent-exchange method. Carbon. 49(4): 1199-1207.
Doi: https://doi.org/10.1016/j.carbon.2010.11.036.
Cai, Y., Yue, Z., & Xu, S. 2017. A Novel Polybenzimidazole Composite Modified by Sulfonated Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells in Anhydrous Atmosphere. Journal of Applied Polymer Science. 134(25).
Doi: https://doi.org/10.1002/app.44986.
Devrim, Y., & Durmuş, G. N. B. 2022. Composite Membrane by Incorporating Sulfonated Graphene Oxide in Polybenzimidazole for High Temperature Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy. 47(14): 9004-9017.
Doi: https://doi.org/10.1016/j.ijhydene.2021.12.257.
Yusoff, Y. N., Loh, K. S., Wong, W. Y., Daud, W. R. W., & Lee, T. K. 2020. Sulfonated Graphene Oxide as an Inorganic Filler in Promoting the Properties of a Polybenzimidazole Membrane as a High Temperature Proton Exchange Membrane. International Journal of Hydrogen Energy. 45(51): 27510-27526.
Doi: https://doi.org/10.1016/j.ijhydene.2020.07.026.
Tian, X., Wang, S., Li, J., Liu, F., Wang, X., Chen, H., ... & Wang, Z. 2017. Composite Membranes based on Polybenzimidazole and Ionic Liquid Functional Si–O–Si Network for HT-PEMFC Applications. International Journal of Hydrogen Energy. 42(34): 21913-21921.
Doi: https://doi.org/10.1016/j.ijhydene.2017.07.071.
Peng, S., Yan, X., Zhang, D., Wu, X., Luo, Y., & He, G. 2016. AH 3 PO 4 Preswelling Strategy to Enhance the Proton Conductivity of a H 2 SO 4-doped Polybenzimidazole Membrane for Vanadium Flow Batteries. RSC Advances. 6(28): 23479-23488.
Doi: https://doi.org/10.1039/C6RA00831C.
Staiti, P., Lufrano, F., Arico, A. S., Passalacqua, E., & Antonucci, V. 2001. Sulfonated Polybenzimidazole Membranes-preparation and Physico-chemical Characterization. Journal of Membrane Science. 188(1): 71-78.
Doi: https://doi.org/10.1016/S0376-7388(01)00359-3.
Gao, S., Chen, X., Xu, H., Luo, T., Ouadah, A., Fang, Z., ... & Zhu, C. 2018. Sulfonated Graphene Oxide‐doped Proton Conductive Membranes based on Polymer Blends of Highly Sulfonated Poly (ether ether ketone) and Sulfonated Polybenzimidazole. Journal of Applied Polymer Science. 135(37): 46547.
Doi: https://doi.org/10.1002/app.46547.
Li, X., Chen, X., & Benicewicz, B. C. 2013. Synthesis and Properties of Phenylindane-containing Polybenzimidazole (PBI) for High-temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Journal of Power Sources. 243: 796-804.
Doi: https://doi.org/10.1016/j.jpowsour.2013.06.033.
Chen, B., Luan, D., Jiao, G., Zhao, D., & Zhu, Y. 2009. Preparation of High Temperature Resistance Polybenzimidazole Resin. Frontiers of Chemistry in China. 4: 207-209.
Doi: https://doi.org/10.1007/s11458-009-0011-1.
Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. 2012. Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. Int. J. Electrochem. Sci. 7(6): 4871-4888.
Özdemir, Y., Üregen, N., & Devrim, Y. 2017. Polybenzimidazole based Nanocomposite Membranes with Enhanced Proton Conductivity for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2648-2657.
Doi: https://doi.org/10.1016/j.ijhydene.2016.04.132.
Mamlouk, M., Ocon, P., & Scott, K. 2014. Preparation and Characterization of Polybenzimidazole/diethylamine Hydrogen Sulphate for Medium Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 245: 915-926.
Doi: https://doi.org/10.1016/j.jpowsour.2013.07.050.
Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. 2017. Development of Polybenzimidazole/graphene Oxide Composite Membranes for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2636-2647.
Doi: https://doi.org/10.1016/j.ijhydene.2016.07.009.
Elakkiya, S., Arthanareeswaran, G., Venkatesh, K., & Kweon, J. 2018. Enhancement of Fuel Cell Properties in Polyethersulfone and Sulfonated Poly (ether ether ketone) Membranes using Metal Oxide Nanoparticles for Proton Exchange Membrane Fuel Cell. International Journal of Hydrogen Energy. 43(47): 21750-21759.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.