KESAN PENGISI TITANIUM DIOKSIDA DALAM MEMBRAN KOMPOSIT POLIBENZIMIDAZOL-GRAFIN OKSIDA BERSULFONAT BAGI APLIKASI PEMFC BERSUHU TINGGI

THE EFFECT OF TITANIUM DIOXIDE FILLER IN POLYBENZIMIDAZOLE-SULFONATED GRAPHENE OXIDE COMPOSITE MEMBRANE FOR HIGH-TEMPERATURE PEMFC APPLICATIONS

Authors

  • Yusra Nadzirah Yusoff Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • Kee Shyuan Loh Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
  • Wai Yin Wong Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20075

Keywords:

Polybenzimidazole, sulfonated graphene oxide, titanium dioxide, HT-PEMFC

Abstract

The polybenzimidazole (PBI) membrane shows significant potential as an alternative membrane for high-temperature PEMFC. However, PBI membranes exhibit low proton conductivities under low humidity conditions and have drawbacks related to acid leaking and phosphoric acid degradation over 160°C. Notably, metal oxide particles exhibit a strong affinity for phosphoric acid. Therefore, titanium dioxide (TiO2) was introduced to investigate its impact on self-humidified PBI-SGO membrane at different mass ratios, utilizing a sonication technique. The hygroscopic properties of TiO2 on PBI-SGO composite membranes are tested for proton conductivity at varied temperatures (25-150 °C), acid doping levels, as well as ion exchange capacity to evaluate their potential as an electrolyte for high-temperature PEMFC application. The PBI-SGO-TiO2 with the mass ratio of 2:1.5 exhibited the highest proton conductivity (0.0128 S cm-1 at 25 ⁰C and 0.0207 S cm-1 at 150 ⁰C) and achieves a higher level of acid doping level and ion exchange capacity with a value of 10.23 ADL and 1.72 mmol g-1, respectively. The composite membranes are also physically characterized by using FTIR, XRD, and FESEM. The PBI-SGO-TiO2 (2:1.5) displayed a good distribution of TiO2 powder, thus contributing to the maximum proton conductivity value. The results of the study prove that the PBI-SGO-TiO2 composite membrane is a potential membrane for applications in HT-PEMFC.

References

Yusoff, Norazriena, Swadi Vijay Kumar, Perumal Rameshkumar, Alagarsamy Pandikumar, Muhammad Mehmood Shahid, Marlinda Ab Rahman, and Nay Ming Huang. 2016. A Facile Preparation of Titanium Dioxide-iron oxide@ Silicon Dioxide Incorporated Reduced Graphene Oxide Nanohybrid for Electrooxidation of Methanol in Alkaline Medium. Electrochimica Acta. 192: 167-176.

Doi: https://doi.org/10.1016/j.electacta.2016.01.190.

Deng, Yuming, Gang Wang, Ming Ming Fei, Xin Huang, Jigui Cheng, Xiaoteng Liu, Lei Xing, Keith Scott, and Chenxi Xu. 2016. A Polybenzimidazole/Graphite Oxide based Three Layer Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells. RSC Advances. 6(76): 72224-72229.

Doi: https://doi.org/10.1039/C6RA11307A.

Holmberg, B. A., Wang, X., & Yan, Y. 2008. Nanocomposite Fuel Cell Membranes based on Nafion and Acid Functionalized Zeolite Beta Nanocrystals. Journal of Membrane Science. 320(1-2): 86-92.

Doi: https://doi.org/10.1016/j.memsci.2008.03.060.

Di Vona, M. L., & Knauth, P. 2013. Sulfonated Aromatic Polymers as Proton-conducting Solid Electrolytes for Fuel Cells: A Short Review. Zeitschrift für Physikalische Chemie. 227(5): 595-614.

Doi: https://doi.org/10.1524/zpch.2013.0337.

Di Vona, M. L., Sgreccia, E., Narducci, R., Pasquini, L., Hou, H., & Knauth, P. 2014. Stabilized Sulfonated Aromatic Polymers by In Situ Solvothermal Cross-Linking. Frontiers in Energy Research. 2: 39.

Doi: https://doi.org/10.3389/fenrg.2014.00039.

Imran, M. A., He, G., Wu, X., Yan, X., Li, T., & Khan, A. S. 2019. Fabrication and Characterization of Sulfonated Polybenzimidazole/sulfonated Imidized Graphene Oxide Hybrid Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Applied Polymer Science. 136(34): 47892.

Doi: https://doi.org/10.1002/app.47892.

Yue, Z., Cai, Y. B., & Xu, S. 2014. Facile Synthesis of a Symmetrical Diamine Containing Bis-benzimidazole Ring and its Thermally Stable Polyimides. Journal of Polymer Research. 21: 1-8.

Doi: https://doi.org/10.1007/s10965-014-0463-y.

Scherer, G. G. (Ed.). 2008. Fuel Cells I. 215. Springer.

Doi: https://doi.org/10.1007/978-3-540-69765-7.

Lysova, A. A., Ponomarev, I. I., & Yaroslavtsev, A. B. 2011. Composite Materials based on Polybenzimidazole and Inorganic Oxides. Solid State Ionics. 188(1): 132-134.

Doi: https://doi.org/10.1016/j.ssi.2010.10.010.

Shabanikia, A., Javanbakht, M., Amoli, H. S., Hooshyari, K., & Enhessari, M. 2015. Polybenzimidazole/strontium Cerate Nanocomposites with Enhanced Proton Conductivity for Proton Exchange Membrane Fuel Cells Operating at High Temperature. Electrochimica Acta. 154: 370-378.

Doi: https://doi.org/10.1016/j.electacta.2014.12.025.

Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. 2015. Fabrication BaZrO3/PBI-based Nanocomposite as a New Proton Conducting Membrane for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 276: 62-72.

Doi: https://doi.org/10.1016/j.jpowsour.2014.11.083.

Huang, L., Zhu, P., Li, G., Lu, D. D., Sun, R., & Wong, C. 2014. Core–shell SiO 2@ RGO Hybrids for Epoxy Composites with Low Percolation Threshold and Enhanced Thermo-mechanical Properties. Journal of Materials Chemistry A. 2(43): 18246-18255.

Doi: https://doi.org/10.1039/C4TA03702B.

Hooshyari, K., Javanbakht, M., Shabanikia, A., & Enhessari, M. 2015. Fabrication BaZrO3/PBI-based Nanocomposite as a New Proton Conducting Membrane for High Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 276: 62-72.

Doi: https://doi.org/10.1016/j.jpowsour.2014.11.083.

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. 2017. Development of Polybenzimidazole/graphene Oxide Composite Membranes for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2636-2647.

Doi: https://doi.org/10.1016/j.ijhydene.2016.07.009.

Xu, C., Liu, X., Cheng, J., & Scott, K. 2015. A Polybenzimidazole/ionic-liquid-graphite-oxide Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources. 274: 922-927.

Doi: https://doi.org/10.1016/j.jpowsour.2014.10.134.

Lee, C., Wei, X., Kysar, J. W., & Hone, J. 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321(5887): 385-388.

Doi: https://doi.org/10.1126/science.1157996.

Wang, Y., Shi, Z., Fang, J., Xu, H., & Yin, J. 2011. Graphene Oxide/polybenzimidazole Composites Fabricated by a Solvent-exchange method. Carbon. 49(4): 1199-1207.

Doi: https://doi.org/10.1016/j.carbon.2010.11.036.

Cai, Y., Yue, Z., & Xu, S. 2017. A Novel Polybenzimidazole Composite Modified by Sulfonated Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells in Anhydrous Atmosphere. Journal of Applied Polymer Science. 134(25).

Doi: https://doi.org/10.1002/app.44986.

Devrim, Y., & Durmuş, G. N. B. 2022. Composite Membrane by Incorporating Sulfonated Graphene Oxide in Polybenzimidazole for High Temperature Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy. 47(14): 9004-9017.

Doi: https://doi.org/10.1016/j.ijhydene.2021.12.257.

Yusoff, Y. N., Loh, K. S., Wong, W. Y., Daud, W. R. W., & Lee, T. K. 2020. Sulfonated Graphene Oxide as an Inorganic Filler in Promoting the Properties of a Polybenzimidazole Membrane as a High Temperature Proton Exchange Membrane. International Journal of Hydrogen Energy. 45(51): 27510-27526.

Doi: https://doi.org/10.1016/j.ijhydene.2020.07.026.

Tian, X., Wang, S., Li, J., Liu, F., Wang, X., Chen, H., ... & Wang, Z. 2017. Composite Membranes based on Polybenzimidazole and Ionic Liquid Functional Si–O–Si Network for HT-PEMFC Applications. International Journal of Hydrogen Energy. 42(34): 21913-21921.

Doi: https://doi.org/10.1016/j.ijhydene.2017.07.071.

Peng, S., Yan, X., Zhang, D., Wu, X., Luo, Y., & He, G. 2016. AH 3 PO 4 Preswelling Strategy to Enhance the Proton Conductivity of a H 2 SO 4-doped Polybenzimidazole Membrane for Vanadium Flow Batteries. RSC Advances. 6(28): 23479-23488.

Doi: https://doi.org/10.1039/C6RA00831C.

Staiti, P., Lufrano, F., Arico, A. S., Passalacqua, E., & Antonucci, V. 2001. Sulfonated Polybenzimidazole Membranes-preparation and Physico-chemical Characterization. Journal of Membrane Science. 188(1): 71-78.

Doi: https://doi.org/10.1016/S0376-7388(01)00359-3.

Gao, S., Chen, X., Xu, H., Luo, T., Ouadah, A., Fang, Z., ... & Zhu, C. 2018. Sulfonated Graphene Oxide‐doped Proton Conductive Membranes based on Polymer Blends of Highly Sulfonated Poly (ether ether ketone) and Sulfonated Polybenzimidazole. Journal of Applied Polymer Science. 135(37): 46547.

Doi: https://doi.org/10.1002/app.46547.

Li, X., Chen, X., & Benicewicz, B. C. 2013. Synthesis and Properties of Phenylindane-containing Polybenzimidazole (PBI) for High-temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Journal of Power Sources. 243: 796-804.

Doi: https://doi.org/10.1016/j.jpowsour.2013.06.033.

Chen, B., Luan, D., Jiao, G., Zhao, D., & Zhu, Y. 2009. Preparation of High Temperature Resistance Polybenzimidazole Resin. Frontiers of Chemistry in China. 4: 207-209.

Doi: https://doi.org/10.1007/s11458-009-0011-1.

Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. 2012. Synthesis and Catalytic Activity of TiO2 Nanoparticles for Photochemical Oxidation of Concentrated Chlorophenols under Direct Solar Radiation. Int. J. Electrochem. Sci. 7(6): 4871-4888.

Özdemir, Y., Üregen, N., & Devrim, Y. 2017. Polybenzimidazole based Nanocomposite Membranes with Enhanced Proton Conductivity for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2648-2657.

Doi: https://doi.org/10.1016/j.ijhydene.2016.04.132.

Mamlouk, M., Ocon, P., & Scott, K. 2014. Preparation and Characterization of Polybenzimidazole/diethylamine Hydrogen Sulphate for Medium Temperature Proton Exchange Membrane Fuel Cells. Journal of Power Sources. 245: 915-926.

Doi: https://doi.org/10.1016/j.jpowsour.2013.07.050.

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. 2017. Development of Polybenzimidazole/graphene Oxide Composite Membranes for High Temperature PEM Fuel Cells. International Journal of Hydrogen Energy. 42(4): 2636-2647.

Doi: https://doi.org/10.1016/j.ijhydene.2016.07.009.

Elakkiya, S., Arthanareeswaran, G., Venkatesh, K., & Kweon, J. 2018. Enhancement of Fuel Cell Properties in Polyethersulfone and Sulfonated Poly (ether ether ketone) Membranes using Metal Oxide Nanoparticles for Proton Exchange Membrane Fuel Cell. International Journal of Hydrogen Energy. 43(47): 21750-21759.

Doi: https://doi.org/10.1016/j.ijhydene.2018.04.094.

Downloads

Published

2023-11-18

Issue

Section

Science and Engineering

How to Cite

KESAN PENGISI TITANIUM DIOKSIDA DALAM MEMBRAN KOMPOSIT POLIBENZIMIDAZOL-GRAFIN OKSIDA BERSULFONAT BAGI APLIKASI PEMFC BERSUHU TINGGI: THE EFFECT OF TITANIUM DIOXIDE FILLER IN POLYBENZIMIDAZOLE-SULFONATED GRAPHENE OXIDE COMPOSITE MEMBRANE FOR HIGH-TEMPERATURE PEMFC APPLICATIONS. (2023). Jurnal Teknologi (Sciences & Engineering), 86(1), 53-62. https://doi.org/10.11113/jurnalteknologi.v86.20075