A REVIEW OF MICROWAVE CURING TECHNIQUE TO FABRICATE NATURAL FIBER REINFORCED POLYMER COMPOSITES

Authors

  • Tasha Lai Sie Ming Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia https://orcid.org/0000-0002-3704-0028
  • Elammaran Jayamani Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
  • Soon Kok Heng Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20087

Keywords:

Natural fiber reinforced polymer composite; chemical treatment; microwave curing; thermoset; thermoplastic

Abstract

Advanced sustainable materials with high performance are garnering a lot of attention nowadays due to rising environmental concerns. Natural fiber reinforced polymer (NFRP) composites are currently one of the huge demands to replace conventional materials as it inhibits great properties, low cost, abundantly available, and environmentally friendly. There are various ways to fabricate NFRP composites such as compression molding, resin transfer molding, etc. However, these methods have several disadvantages (e.g., non-uniform temperature distribution, longer processing time, and high cost). This paper reviews the current trend of utilizing microwave curing in fabricating NFRP as it provides volumetric heating, less power consumption, and is more efficient.

References

Ankit, Rinawa, M., Chauhan, P., D. Suresh, Kumar, S. & Santhosh Kumar, R. 2021. A Review on Mechanical Properties of Natural Fiber Reinforced Polymer (NFRP) Composites. Materials Today: Proceedings.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Bachchan, A. A., Das, P. P. & Chaudhary, V. 2022. Effect of Moisture Absorption on the Properties of Natural Fiber Reinforced Polymer Composites: A Review. Materials Today: Proceedings. 49: 3403-3408.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Venkatarajan, S. & Athijayamani, A. 2021. An Overview on Natural Cellulose Fiber Reinforced Polymer Composites. Materials Today: Proceedings. 37: 3620-3624.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Vinod, A., Sanjay, M. R. & Siengchin, S. 2023. Recently Explored Natural Cellulosic Plant Fibers 2018–2022: A Potential Raw Material Resource for Lightweight Composites. Industrial Crops and Products. 192.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Reddy, R. A., Yoganandam, K. & Mohanavel, V. 2020. Effect of Chemical Treatment on Natural Fiber for Use in Fiber Reinforced Composites – Review. Materials Today: Proceedings. 33: 2996-2999.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

B. A. P. Buradi, A. N. S. Vasu, V. K. Hatgundi, J. & D. H. 2022. Study on Characterization of Mechanical, Thermal Properties, Machinability and Biodegradability of Natural Fiber Reinforced Polymer Composites and Its Applications, Recent Developments and Future Potentials: A Comprehensive Review. Materials Today: Proceedings. 52: 1255-1259.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Dattatreya, K., Sathees Kumar, S., Prasad, V. V. S. H. & Ranjan Pati, P. 2023. Mechanical Properties of Waste Natural Fibers/Fillers Reinforced Epoxy Hybrid Composites for Automotive Applications. Materials Today: Proceedings.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam, M. & Venkateshwaren, N. 2015. Mechanical Properties of Banana/kenaf Fiber-reinforced Hybrid Polyester Composites: Effect of Woven Fabric and Random Orientation. Materials & Design (1980-2015). 66: 246-257.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Choudhary, S., Haloi, J., Kumar Sain, M., Saraswat, P. & Kumar, V. 2023. Systematic Literature Review on Thermal and Acoustic Characteristics of Natural Fibre Polymer Composites for Automobile Applications. Materials Today: Proceedings.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Singh, M. K., Tewari, R., Zafar, S., Rangappa, S. M. & Siengchin, S. 2023. A Comprehensive Review of Various Factors for Application Feasibility of Natural Fiber-Reinforced Polymer Composites. Results in Materials. 17.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Campana, C., Leger, R., Sonnier, R., Ferry, L. & Ienny, P. 2018. Effect of Post Curing Temperature on Mechanical Properties of a Flax Fiber Reinforced Epoxy Composite. Composites Part A: Applied Science and Manufacturing. 107: 171-179.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Martínez-Barrera, G., Gencel, O. & Martínez-López, M. 2022. Performance Improvement of Polymer Concrete Produced with Unsaturated Resin, by a Post-cure Process, Polyester Fibers and Gamma Radiation. Journal of Building Engineering. 59.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Yathisha, N. & Suresha, S. 2021. Influence of Post Curing Methodology on Strength of Polymer Matrix Composites with a Circular Hole and Square Inbuilt Patches. Materials Today: Proceedings. 44: 1296-1299.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Naik, T. P., Singh, I. & Sharma, A. K. 2022. Processing of Polymer Matrix Composites using Microwave Energy: A Review. Composites Part A: Applied Science and Manufacturing. 156.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Mgbemena, C. O., Li, D., Lin, M-F., Liddel, P. D., Katnam, K. B., Thakur, V. K. & Nezhad, H. Y. 2018, Accelerated Microwave Curing of Fibre-reinforced Thermoset Polymer Composites for Structural Applications: A Review of Scientific Challenges. Composites Part A: Applied Science and Manufacturing. 115: 88-103.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Rao, S., Vijapur, L. & Prakash, M. R. 2020. Effect of Incident Microwave Frequency on Curing Process of Polymer Matrix Composites. Journal of Manufacturing Processes. 55: 198-207.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S. & Pradeep, S. 2018. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. Journal of Cleaner Production. 172: 566-581.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Lakshmi Narayana, V. & Bhaskara Rao, L. 2021. A Brief Review on the Effect of Alkali Treatment on Mechanical Properties of Various Natural Fiber Reinforced Polymer Composites. Materials Today: Proceedings. 44: 1988-1994.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L. & Vigneshkumar, N. 2020. An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Materials Today: Proceedings. 27: 2828-2834.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Kumar Singh, B., Kumar Komal, U., Singh, Y., Singh Banwait, S. & Singh, I. 2021. Development of Banana Fiber Reinforced Composites from Plastic Waste. Materials Today: Proceedings. 44: 2194-2198.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Azwa, Z. N., Yousif, B. F., Manalo, A. C. & Karunasena, W. 2013. A Review on the Degradability of Polymeric Composites based on Natural Fibres. Materials & Design. 47: 424-442.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Noori, A., Lu, Y., Saffari, P., Liu, J. & Ke, J. 2021. The Effect of Mercerization on Thermal and Mechanical Properties of Bamboo Fibers as a Biocomposite Material: A Review. Construction and Building Materials. 279.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H. & Shah, A. U. M. 2019. Effects of Fibre Treatment on Mechanical Properties of Kenaf Fibre Reinforced Composites: A Review. Journal of Materials Research and Technology. 8(3): 3327-3337.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Jahan, F. & Soni, M. 2021. Effects of Chemical Treatment on Mechanical Properties of Various Natural Fiber Reinforced Composite: A Review. Materials Today: Proceedings. 46: 6708-6711.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Merlini, C., Soldi, V. & Barra, G. M. O. 2011. Influence of Fiber Surface Treatment and Length on Physico-chemical Properties of Short Random Banana Fiber-reinforced Castor Oil Polyurethane Composites. Polymer Testing. 30(8): 833-840.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Cai, M., Takagi, H., Nakagaito, A. N., Li, Y. & Waterhouse, G. I. N. 2016. Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-reinforced Composites. Composites Part A: Applied Science and Manufacturing. 90: 589-597.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Wong, K. J., Yousif, B. F. & Low, K. O. 2016. The Effects of Alkali Treatment on the Interfacial Adhesion of Bamboo Fibres. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 224(3): 139-148.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Guo, A., Sun, Z. & Satyavolu, J. 2019. Impact of Chemical Treatment on the Physiochemical and Mechanical Properties of Kenaf Fibers'. Industrial Crops and Products. 141.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Pradeepa, B. & Kiruthika, A. V. 2022. Experimental Investigation on Mechanical Properties of Alkali Treated Jute Fibre Reinforced Sodium Alginate Composites. Materials Today: Proceedings. 68: 534-542.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Archana Babu, S. & Narayanankutty, S. K. 2022. Investigation on the Thermal-flammability and Mechanical Performance of Coir Fiber Reinforced Biocomposites. Materials Today: Proceedings. 51: 2569-2572.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Nightingale, C. & Day, R. J. 2002. Flexural and Interlaminar Shear Strength Properties of Carbon Fibre Epoxy Composites Cured Thermally and with Microwave Radiation. Composites Part A: Applied Science and Manufacturing.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Zhou, S. & Hawley, M. C. 2003. A Study of Microwave Reaction Rate Enhancement Effect in Adhesive Bonding of Polymers and Composites'. Composite Structures. 61(4): 303-309.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Duan, X., Srinivasakannan, C., Wang, X., Wang, F. & Liu, X. 2017. Synthesis of Activated Carbon Fibers from Cotton by Microwave Induced H3PO4 Activation. Journal of the Taiwan Institute of Chemical Engineers. 70: 374-381.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Sosa, E. D., Worthy, E. S. & Darlington, T. K. 2016. Microwave Assisted Manufacturing and Repair of Carbon Reinforced Nanocomposites. Journal of Composites. 2016. 1-9.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Rao, S., Chiranjeevi, M. C. & Rajendra Prakash, M. 2018. Vacuum-assisted Microwave Processing of Glass-epoxy Composite Laminates using Novel Microwave Absorbing Molds. Polymer Composites. 39(4): 1152-1160.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Wang, L., Zhang, X., Ma, Y., Yang, M. & Qi, Y. 2016. Rapid Microwave-assisted Hydrothermal Synthesis of One-dimensional MoO 3 Nanobelts. Materials Letters. 164: 623-626.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Jahani, Y., Baena, M., Barris, C., Perera, R. & Torres, L. 2022. Influence of Curing, Post-curing and Testing temperatures on Mechanical Properties of a Structural Adhesive. Construction and Building Materials. 324.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Mooteri, P. S., Sridhara, B. K., Rao, S., Prakash, M. R. & Rao, R. M. V. G. K. 2016. Studies on Mechanical Behavior of Microwave and Thermally Cured Glass Fiber Reinforced Polymer Composites. Journal of Reinforced Plastics and Composites. 25(5): 503-512.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Verma, N., Kumar, R., Zafar, S. & Pathak, H. 2020. Vacuum-assisted Microwave Curing of Epoxy/carbon Fiber Composite: An Attempt for Defect Reduction in Processing. Manufacturing Letters. 24: 127-131.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Shimamoto, D., Tominaga, Y. & Hotta, Y. 2016. Effect of Microwave Irradiation on Carbon Fiber/epoxy Resin Composite Fabricated by Vacuum Assisted Resin Transfer Molding. Advanced Composite Materials. 25(1): 71-79.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Liu, X., He, Y., Qiu, D. & Yu, Z. 2019. Numerical Optimizing and Experimental Evaluation of Stepwise Rapid High-pressure Microwave Curing Carbon Fiber/Epoxy Composite Repair Patch. Composite Structures. 230.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Kumar, B., Roy, S., Agumba, D. O., Pham, D. H. & Kim, J. 2022. Effect of Bio-based Derived Epoxy Resin on Interfacial Adhesion of Cellulose Film and Applicability Towards Natural Jute Fiber-reinforced Composites. Int J Biol Macromol. 222(Pt A): 1304-1313.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Chen, S., Chen, L., Wang, Y., Wang, C., Miao, M. & Zhang, D. 2019. Load Transfer of Thiol-ended Hyperbranched Polymers to Improve Simultaneously Strength and Longation of CNTs/epoxy Nanocomposites. European Polymer Journal. 120.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Dash, C. & Bisoyi, D. K. 2022. Microwave Radiation Technique for the Isolation of Sunn Hemp Natural Fiber in the Application of Material Processing. Journal of Non-Crystalline Solids. 591.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Li, N., Li, Y., Hang, X. & Gao, J. 2014. Analysis and Optimization of Temperature Distribution in Carbon Fiber Reinforced Composite Materials during Microwave Curing Process. Journal of Materials Processing Technology. 214(3): 544-550.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Akinyemi, A. B., Omoniyi, E. T. & Onuzulike, G. 2020. Effect of Microwave Assisted Alkali Pretreatment and Other Pretreatment Methods on Some Properties of Bamboo Fibre Reinforced Cement Composites. Construction and Building Materials. 245.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Bajpai, P. K., Singh, I. & Madaan, J. 2012. Joining of Natural Fiber Reinforced Composites using Microwave Energy: Experimental and Finite Element Study. Materials & Design. 35: 596-602.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Ali, S., Bajpai, P. K., Singh, I. & Sharma, A. K. 2014. Curing of Natural Fibre-reinforced Thermoplastic Composites using Microwave Energy. Journal of Reinforced Plastics and Composites. 33(11): 993-999.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Verma, N., Zafar, S. & Talha, M. 2020. Application of Microwave Energy for Rapid Fabrication of Nano-hydroxyapatite Reinforced Polycaprolactone Composite Foam. Manufacturing Letters. 23: 9-13.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Singh, M. K. & Zafar, S. 2019. Development and Mechanical Characterization of Microwave-cured Thermoplastic based Natural Fibre Reinforced Composites. Journal of Thermoplastic Composite Materials. 32(10): 1427-1442.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Mohammed, A. A., Bachtiar, D., Rejab, M. R. M. & Siregar, J. P. 2018. Effect of Microwave Treatment on Tensile Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites. Defence Technology. 14(4): 287-290.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Verma, N., Singh, M. K., Zafar, S. & Pathak, H. 2021. Comparative Study of In-situ Temperature Measurement during Microwave-assisted Compression-molding and Conventionally Compression-molding Process. CIRP Journal of Manufacturing Science and Technology. 35: 336-345.

Doi: http://dx.doi.org/10.11113/jt.v79.9987.

Kyriakou-Tziamtzi, C., Vlachopoulos, A., Zamboulis, A. Bikiaris, D. N., Achilias, D. S. & Chrissafis, K. 2023. Kinetic Evaluation of the Crosslinking of a Low-temperature Cured Biobased Epoxy-diamine Structure. Progress in Organic Coatings. 174.

Doi: http://dx.doi.org/10.1016/j.porgcoat.2022.107285.

Ghaffari, M., Ehsani, M., Vandalvand, M., Avazverdi, E., Askari, A. & Goudarzi, A. 2015. Studying the Effect of Micro- and Nano-sized Zno Particles on the Curing Kinetic of Epoxy/Polyaminoamide System. Progress in Organic Coatings. 89: 277-283.

Doi: http://dx.doi.org/10.1016/j.porgcoat.2015.08.016.

Tziamtzi, C. K. & Chrissafis, K. 2021. Optimization of a Commercial Epoxy Curing Cycle via DSC Data Kinetics Modelling and TTT Plot Construction. Polymer. 230.

Doi: http://dx.doi.org/10.1016/j.polymer.2021.124091.

Johnston, K., Pavuluri, S. K., Leonard, M. T., Desmulliez, M. P. Y. & Arrighi, V. 2015. Microwave and Thermal Curing of an Epoxy Resin for Microelectronic Applications. Thermochimica Acta. 616: 100-109.

Doi: http://dx.doi.org/10.1016/j.tca.2015.08.010.

Lopez de Vergara, U., Sarrionandia, M., Gondra, K & Aurrekoetxea, J. 2014. Polymerization and Curing Kinetics of Furan Resins under Conventional and Microwave Heating. Thermochimica Acta. 581: 92-99.

Doi: http://dx.doi.org/10.1016/j.tca.2014.02.017.

Yarlagadda, K. D. V. P. & Hsu, S-H. 2004. Experimental Studies on Comparison of Microwave Curing and Thermal Curing of Epoxy Resins used for Alternative Mould Materials. Journal of Materials Processing Technology. 155-156: 1532-1538.

Doi: http://dx.doi.org/10.1016/j.jmatprotec.2004.04.248.

Downloads

Published

2023-08-21

Issue

Section

Science and Engineering

How to Cite

A REVIEW OF MICROWAVE CURING TECHNIQUE TO FABRICATE NATURAL FIBER REINFORCED POLYMER COMPOSITES. (2023). Jurnal Teknologi (Sciences & Engineering), 85(5), 113-123. https://doi.org/10.11113/jurnalteknologi.v85.20087