ADDITIVES AND BACTERIAL CELLULOSE (BC): FRIEND OR FOE?
DOI:
https://doi.org/10.11113/jurnalteknologi.v87.20107Keywords:
Bacterial cellulose, additives, properties, production, applicationsAbstract
In recent years, the issues of environment and economy have encouraged researchers to channel their research interest to sustainable bio-resource. Bacterial cellulose (BC), which is the extracellular matrix from various genera of bacteria is the versatile biopolymer and have unique characteristics. BC had contributed outstanding applications in various fields such as bone tissue engineering, drug delivery, wound healing material, skincare and cosmetics. Numerous researchers have published their studies on BC production to date. In order to further evolve the application of this biomaterial, notable progress towards bacterial cellulose development and its properties enhancement have appeared recently. The establishment of bacterial cellulose in diverse applications has been the subject of numerous papers and research reports. This review paper will elucidate the utilization of various additives that have been employed in BC production and applications. Furthermore, to highlight the important influences of different additives on BC production and qualities in the creation of value-added products.
References
Hu, H., Catchmark, J. M., & Demirci, A. 2022. Effects of Pullulan Additive and Co-culture of Aureobasidium Pullulans on Bacterial Cellulose Produced by Komagataeibacter hansenii. Bioprocess and Biosystems Engineering. 45(3): 573–587.
Doi: https://doi.org/10.1007/s00449-021-02680-x.
Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Ray, R. R. 2021. Bacterial Cellulose: Production, Characterization and Application as Antimicrobial Agent. International Journal of Molecular Sciences, 22(23): 1–18. Doi: https://doi.org/10.3390/ijms222312984.
El, H., Tarek, G., Basu, J., & Ahmed, R. 2022. Recent Advances in Bacterial Cellulose: A Low‑cost Effective Production Media, Optimization Strategies and Applications. Cellulose. Springer Netherlands.
Doi: https://doi.org/10.1007/s10570-022-04697-1
Ullah, H., Santos, H., & Khan, T. 2016. Applications of Bacterial Cellulose in Food, Cosmetics and Drug Delivery. Cellulose. 23: 2291–2314.
Doi: https://doi.org/10.1007/s10570-016-0986-y.
Swingler, S., Gupta, A., Gibson, H., Kowalczuk, M., Heaselgrave, W., & Radecka, I. 2021. Recent Advances and Applications of Bacterial Cellulose In Biomedicine. Polymers, 13(3): 1–29.
Doi: https://doi.org/10.3390/polym13030412.
Volova, T. G., Prudnikova, S. V., Sukovatyi, A. G., & Shishatskaya, E. I. 2018. Production and Properties of Bacterial Cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102(17): 7417–7428.
DOI: https://doi.org/10.1007/s00253-018-9198-8.
Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. 2020. Bacterial Cellulose in Food Industry: Current Research and Future Prospects. International Journal of Biological Macromolecules, 158: 1007–1019.
Doi: https://doi.org/10.1016/j.ijbiomac.2020.04.230.
Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. 2019. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems. 3.
Doi: https://doi.org/10.3389/fsufs.2019.00007.
Zhong, C. 2020. Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology. 8: 1–19.
Doi: https://doi.org/10.3389/fbioe.2020.605374.
Andritsou, V., De Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. 2018. Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega. 3(8): 10365–10373.
Doi: https://doi.org/10.1021/acsomega.8b01315.
Kolesovs, S., & Semjonovs, P. 2020. Production of Bacterial Cellulose from Whey—Current State and Prospects. Applied Microbiology and Biotechnology. 104(18): 7723–7730.
Doi: https://doi.org/10.1007/s00253-020-10803-9.
Keshk, S. M. A. S. 2014. Vitamin C Enhances Bacterial Cellulose Production in Gluconacetobacter xylinus. Carbohydrate Polymers. 99: 98–100.
Doi: https://doi.org/10.1016/j.carbpol.2013.08.060.
Mohite, B. V., & Patil, S. V. 2014. A Novel Biomaterial: Bacterial Cellulose and Its New Era Applications. Biotechnology and Applied Biochemistry. 61(2): 101110. Doi: https://doi.org/10.1002/bab.1148.
Aswini, K., Gopal, N. O., & Uthandi, S. 2020. Optimized culture Conditions for Bacterial Cellulose Production by Acetobacter senegalensis MA1. BMC Biotechnology. 20(1): 1–16.
Doi: https://doi.org/10.1186/s12896-020-00639-6.
Li, Y., Tian, C., Tian, H., Zhang, J., He, X., Ping, W., & Lei, H. 2012. Improvement of Bacterial Cellulose Production by Manipulating the Metabolic Pathways in which Ethanol and Sodium Citrate Involved. Applied Microbiology and Biotechnology. 96(6): 1479–1487.
Doi: https://doi.org/10.1007/s00253-012-4242-6.
Li, G., Wang, L., Deng, Y., & Wei, Q. 2022. Research Progress of the Biosynthetic Strains and Pathways of Bacterial Cellulose. Journal of Industrial Microbiology and Biotechnology. 49(1).
DOI: https://doi.org/10.1093/jimb/kuab071.
Betlej, I., Krajewski, K. J., Boruszewski, P., & Zakaria, S. 2021. Bacterial Cellulose-properties and Its Potential Application. Sains Malaysiana. 50(2): 493–505.
Doi: https://doi.org/10.17576/jsm-2021-5002-20.
Blanco Parte, F. G., Santoso, S. P., Chou, C. C., Verma, V., Wang, H. T., Ismadji, S., & Cheng, K. C. 2020. Current Progress on the Production, Modification, and Applications of Bacterial Cellulose. Critical Reviews in Biotechnology. 40(3): 397–414.
Doi: https://doi.org/10.1080/07388551.2020.1713721.
Liu, M., Liu, L., Jia, S., Li, S., Zou, Y., & Zhong, C. 2018. Complete Genome Analysis of Gluconacetobacter xylinus CGMCC 2955 for Elucidating Bacterial Cellulose Biosynthesis and Metabolic Regulation. Scientific Reports. 8(1): 1–10.
Doi: https://doi.org/10.1038/s41598-018-24559-w.
Carvalho, T., Guedes, G., Sousa, F. L., Freire, C. S. R., & Santos, H. A. 2019. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnology Journal. 14(12): 1–19.
Doi: https://doi.org/10.1002/biot.201900059.
Agustin, Y. E., & Padmawijaya, K. S. 2018. Effect of Acetic Acid and Ethanol as Additives on Bacterial Cellulose Production by Acetobacter Xylinum. IOP Conference Series: Earth and Environmental Science. 209(1).
Doi: https://doi.org/10.1088/1755-1315/209/1/012045.
Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. 2018. Cost-effective Production of Bacterial Cellulose using Acidic Food Industry By-products. Brazilian Journal of Microbiology. 49: 151–159.
Doi: https://doi.org/10.1016/j.bjm.2017.12.012.
Keshk, S., & Sameshima, K. 2006. Influence of Lignosulfonate on Crystal Structure and Productivity of Bacterial Cellulose in a Static Culture. Enzyme and Microbial Technology. 40(1): 4–8.
Doi: https://doi.org/10.1016/j.enzmictec.2006.07.037.
Castro, C., Zuluaga, R., Putaux, J. L., Caro, G., Mondragon, I., & Gañán, P. 2011. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter swingsii sp. from Colombian Agroindustrial Wastes. Carbohydrate Polymers. 84(1): 96–102.
Doi: https://doi.org/10.1016/j.carbpol.2010.10.072.
Ruka, D. R., Simon, G. P., & Dean, K. M. 2012. Altering the Growth Conditions of Gluconacetobacter xylinus to Maximize the Yield of Bacterial Cellulose. Carbohydrate Polymers. 89(2): 613–622.
Doi: https://doi.org/10.1016/j.carbpol.2012.03.059.
Gorgieva, S., & Trček, J. 2019. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials. 9(10): 1–20.
Doi: https://doi.org/10.3390/nano9101352.
Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. 1996. A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology and Biochemistry. 60(4): 575–579.
Doi: https://doi.org/10.1271/bbb.60.575.
Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. 1998. Effect of Lactate on Bacterial Cellulose Production from Fructose in Continuous Culture. Journal of Fermentation and Bioengineering. 85(1): 89–95.
Doi: https://doi.org/10.1016/S0922-338X(97)80360-1.
Chao, Y., Mitarai, M., Sugano, Y., & Shoda, M. 2001. Effect of Addition of Water-soluble Polysaccharides on Bacterial Cellulose Production in a 50-L Airlift Reactor. Biotechnology Progress. 17(4): 781–785.
Doi: https://doi.org/10.1021/bp010046b.
Ishida, T., Sugano, Y., Nakai, T., & Shoda, M. 2002. Effects of Acetan on Production of Bacterial Cellulose by Acetobacte Xylinum. Bioscience, Biotechnology and Biochemistry. 66(8): 1677–1681.
Doi: https://doi.org/10.1271/bbb.66.1677.
Bae, S., Sugano, Y., & Shoda, M. 2004. Improvement of Bacterial Cellulose Production by Addition of Agar in a Jar Fermentor. Journal of Bioscience and Bioengineering. 97(1): 33–38.
Doi: https://doi.org/10.1016/S1389-1723(04)70162-0.
Cheng, K. C., Catchmark, J. M., & Demirci, A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16(6): 1033–1045.
Doi: https://doi.org/10.1007/s10570-009-9346-5.
Wang, J., Tavakoli, J., & Tang, Y. 2019. Bacterial Cellulose Production, Properties and Applications with Different Culture Methods – A Review. Carbohydrate Polymers. 219: 63–76.
Doi: https://doi.org/10.1016/j.carbpol.2019.05.008.
Zhou, L. L., Sun, D. P., Hu, L. Y., Li, Y. W., & Yang, J. Z. 2007. Effect of the Addition of Sodium Alginate on Bacterial Cellulose Production by Acetobacter xylinum. Journal of Industrial Microbiology and Biotechnology. 34(7): 483–489.
Doi: https://doi.org/10.1007/s10295-007-0218-4.
Keshk, S. 2006. Physical Properties of Bacterial Cellulose Sheets Produced in Presence of Lignosulfonate. Enzyme and Microbial Technology. 40(1): 9–12.
Doi: https://doi.org/10.1016/j.enzmictec.2006.07.038.
Shah, N., Ha, J. H., & Park, J. K. 2010. Effect of Reactor Surface on Production of Bacterial Cellulose and Water Soluble Oligosaccharides by Gluconacetobacter Hansenii PJK. Biotechnology and Bioprocess Engineering. 15(1): 110–118.
Doi: https://doi.org/10.1007/s12257-009-3064-6.
Jiang, Y., Yu, G., Zhou, Y., Liu, Y., Feng, Y., & Li, J. 2020. Effects of Sodium Alginate on Microstructural and Properties of Bacterial Cellulose Nanocrystal Stabilized Emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 607: 125474.
Doi: https://doi.org/10.1016/j.colsurfa.2020.125474.
Premjet, S., Ohtani, Y., & Sameshima, K. 1994. The Contribution of High Molecular Lignosulfonate to the Powerful Bacterial Cellulose Production System with Acetobacter xylinum ATCC 10245. Sen’i Gakkaishi. 50(10): 458–463.
Doi: https://doi.org/10.2115/fiber.50.10_458.
Santos, S. M., Carbajo, J. M., Gómez, N., Ladero, M., & Villar, J. C. 2017. Modification of Bacterial Cellulose Biofilms with xylan Polyelectrolytes. Bioengineering. 4(4).
DOI: https://doi.org/10.3390/bioengineering4040093.
Li, Z., Chen, X., Bao, C., Liu, C., Li, D., Yan, H., & Lin Q., 2021. Fabrication and Evaluation of Alginate/Bacterial Cellulose Nanocrystals-Chitosan-Gelatin Composite Scaffolds. Molecules. 26(16). Doi: https://doi.org/10.3390/molecules26165003.
Liyaskina, E. V., Revin, V. V., Paramonova, E. N., Revina, N. V., & Kolesnikova, S. G. 2018. Bacterial Cellulose/Alginate Nanocomposite for Antimicrobial Wound Dressing. KnE Energy, 3(2): 202. Doi: https://doi.org/10.18502/ken.v3i2.1814.
Rachtanapun, P., Jantrawut, P., Klunklin, W., Jantanasakulwong, K., Phimolsiripol, Y., Leksawasdi, N., … Ngo, T. M. P. 2021. Carboxymethyl Bacterial Cellulose from nata de coco: Effects of NaOH. Polymers. 13(3): 1–17. Doi: https://doi.org/10.3390/polym1303034.
Roy, S., & Rhim, J. W. 2020. Carboxymethyl Cellulose-based Antioxidant and Antimicrobial Active Packaging Film Incorporated with Curcumin and Zinc Oxide. International Journal of Biological Macromolecules. 148: 666–676.
Doi: https://doi.org/10.1016/j.ijbiomac.2020.01.204.
de Lima Fontes, M., Meneguin, A. B., Tercjak, A., Gutierrez, J., Cury, B. S. F., dos Santos, A. M., … Barud, H. S. (2018). Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydrate Polymers, 179; 126–134.
Doi: https://doi.org/10.1016/j.carbpol.2017.09.061.
Królczyk, J. B., Dawidziuk, T., Janiszewska-Turak, E., & Sołowiej, B. 2016. Use of Whey and Whey Preparations in the Food Industry - A Review. Polish Journal of Food and Nutrition Sciences. 66(3): 157–165. Doi: https://doi.org/10.1515/pjfns-2015-0052.
Douglas, T. E. L., Vandrovcová, M., Kročilová, N., Keppler, J. K., Zárubová, J., Skirtach, A. G., & Bačáková, L. 2018. Application of Whey Protein Isolate in Bone Regeneration: Effects on Growth and Osteogenic Differentiation of Bone-forming Cells. Journal of Dairy Science. 101(1): 28–36. Doi: https://doi.org/10.3168/jds.2017-13119.
Heinze T., Liebert T. & Koschella, A. 2006. Esterification of Polysaccharides. Springer; Berlin/Heidelberg, Germany: New York, NY, USA.
Lopes, T. D., Riegel-Vidotti, I. C., Grein, A., Tischer, C. A. & Faria-Tischer, P. C. S. Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. International Journal of Biological Macromolecules. 6: 401–408.
Doi: https://doi.org/10.1016/j.ijbiomac.2014.03.047.
Jia, Y., Huo, M. & Jia, S. 2014. Bacterial Cellulose/Hyaluronic Acid Composites: Preparation and Characterization. In: Zhang, T. C., Ouyang, P., Kaplan, S., Skarnes, B. (eds). Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 249. Springer, Berlin, Heidelberg.
Doi: https://doi.org/10.1007/978-3-642-37916-1_39.
Xin Wang, Jing Tang, Jihong Huang, Ming Hui. 2020. Production and Characterization of Bacterial Cellulose Membranes with Hyaluronic Acid and Silk Sericin. Colloids and Surfaces B: Biointerfaces. 195(2020): 11273.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













