AN ENHANCED WALABI METHOD FOR EMERGENCY VEHICLE PRIORITY SYSTEM
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.20117Keywords:
Intelligent Traffic Light System, Emergency Vehicle Priority System, Walabi Method, Emergency Response Time, Emergency VehicleAbstract
Emergency response time (ERT) is a critical emergency provider's performance indicator. Traffic congestion, particularly at traffic light system (TLS) intersections, substantially impacts the ERT of emergency vehicles (EVs). In order to achieve ERT, it is crucial to have an emergency vehicle priority (EVP) system. EVP with Walabi (EVP-Walabi) method has been introduced but the existing approach caused EV to slow down when approaching TLS. This is because the existing EVP-Walabi method is only able to allow a green signal when the EV joins the queue at the TLS intersection. Therefore, this research introduced an enhanced Walabi method (EVP-Enhanced Walabi) to enhance the EV movement through the intersections. The simulation setup in this research used a series of TLS intersections in Simulation of Urban Mobility (SUMO) operating under uncongested and congested traffic flows. According to the simulation results, the EVP-Enhanced Walabi method mitigated the effect of EV slowing in the lowest and most congested traffic, which TLS without EVP and the original Walabi cannot handle. This can be proven when the improvement percentage range for Time Taken (TT) to reach accident site by EVP-Enhanced Walabi is between 7.05% and 35.18%. In addition, the EV travels at a higher average speed through the intersections, indicating smoother movement to the accident site.
References
G. Karmakar, A. Chowdhury, J. Kamruzzaman, and I. Gondal. 2020. A Smart Priority Based Traffic Control System for Emergency Vehicles. IEEE Sens. J. 1-1. Doi: 10.1109/jsen.2020.3023149.
A. Chowdhury. 2016. Priority based and Secured Traffic Management System for Emergency Vehicle using IoT. Proc. - 2016 Int. Conf. Eng. MIS, ICEMIS 2016. 1-6. Doi: 10.1109/ICEMIS.2016.7745309.
L. Sumia and V. Ranga. 2018. Intelligent Traffic Management System for Prioritizing Emergency Vehicles in a Smart City. Int. J. Eng. 31(2): 278-283. Doi: 10.5829/ije.2018.31.02b.11.
A. Khan, F. Ullah, Z. Kaleem, S. Ur Rahman, H. Anwar, and Y. Z. Cho. 2018. EVP-STC: Emergency Vehicle Priority and Self-organising Traffic Control at Intersections using Internet-of-things Platform. IEEE Access. 6: 68242-68254. Doi: 10.1109/ACCESS.2018.2879644.
M. M. Wani, S. Khan, and M. Alam. 2020. IoT - Based Traffic Management System for Ambulances. arXiv. April.
L. Bieker-Walz and M. Behrisch. 2019. Modelling Green Waves for Emergency Vehicles using Connected Traffic Data. Epic Ser. Comput. 62(May): 10-20. Doi: 10.29007/sj1m.
Y. S. Huang, J. Y. Shiue, and J. Luo. 2015. A Traffic Signal Control Policy for Emergency Vehicles Preemption using Timed Petri Nets. IFAC-PapersOnLine. 28(3): 2183-2188. Doi: 10.1016/j.ifacol.2015.06.412.
K. Shaaban, M. A. Khan, R. Hamila, and M. Ghanim. 2019. A Strategy for Emergency Vehicle Preemption and Route Selection. Arab. J. Sci. Eng. 44(10): 8905-8913. Doi: 10.1007/s13369-019-03913-8.
J. Wu, B. Kulcsár, S. Ahn, and X. Qu. 2020. Emergency Vehicle Lane Pre-clearing: From Microscopic Cooperation to Routing Decision Making. Transp. Res. Part B Methodol. 141: 223-239. Doi: 10.1016/j.trb.2020.09.011.
J. J. K. JKR Malaysia. 2017. A Guide to the Design of Traffic Signal. 87(Pindaan). JKR Malaysia.
A. Badiruzaman, R. Mohamad, and K. M. Ng. 2022. Emergency Vehicle Response Time and Priorities System in Malaysia: A Review. J. Electr. Electron. Syst. Res. 21: 45-53. Doi: 10.24191/jeesr.v21i1.007.
L. Bieker-Walz, M. Behrisch, and M. Junghans. 2018. Analysis of the Traffic Behavior of Emergency Vehicles in a Microscopic Traffic Simulation. 2(May): 1-13. Doi: 10.29007/bv4j.
S. F. F. Ahmad. 2016. Quality Performance Measurements of Ambulance Services in East Coast, Malaysia. Universiti Sains Malaysia.
S. Di Teo, M. B. Yazid, M. S. S. Hamzah, T. H. Tuan Kamaruzaman, and N. H. Nik Ab. Rahman. 2020. Factors Associated with Delayed Ambulance Response Time in Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan. Malaysian J. Public Heal. Med. 20(1): 9-14. Doi: 10.37268/mjphm/vol.20/no.1/art.551.
Z. Asri, M. B. Yazid, M. S. S. C. Hamzah, N. Yaacob, T. H. T. Kamauzaman, and N. H. N. A. Rahman. 2021. Factors Contributing to Delayed Ambulance Response Time using Ambulance Vehicle Locator and Global Integrating System (Avl-Gis) At Hospital Universiti Sains Malaysia,” Malaysian J. Public Heal. Med. 21(2): 218-225. Doi: 10.37268/mjphm/vol.21/no.2/art.940.
S. Khairilmizal et al. 2017. Criteria for an Integrated Disaster Management System for Lead Responding Agency in Malaysia. Adv. Sci. Lett. 23(5): 4278-4280. Doi: 10.1166/asl.2017.8248.
K. Perumahan, D. Kerajaan, and D. Kualiti. 2018. Jabatan Bomba dan Penyelamat Malaysia.. 1: 47100.
Malaysia JBPM. 2018. Jabatan Bomba dan Penyelamat Malaysia - Laporan Tahunan 2018. [Online]. Available: https://www.bomba.gov.my/bomba/resources/user_1/UploadFile/Penerbitan/BOMBA_2018.pdf.
New Strait Time. 2019. Ambulance Crash not an Isolated Tragedy. New Strait Time. 3.
N. Al-Ostath, F. Selityn, Z. Al-Roudhan, and M. El-Abd. 2015. Implementation of an Emergency Vehicle to Traffic Lights Communication System. 2015 7th Int. Conf. New Technol. Mobil. Secur. - Proc. NTMS 2015 Conf. Work. Doi: 10.1109/NTMS.2015.7266494.
H. Mu, Y. Song, and L. Liu. 2018. Route-based Signal Preemption Control of Emergency Vehicle. J. Control Sci. Eng. Doi: 10.1155/2018/1024382.
W. Min, L. Yu, P. Chen, M. Zhang, Y. Liu, and J. Wang. 2020. On-demand Greenwave for Emergency Vehicles in a Time-Varying Road Network with Uncertainties. IEEE Trans. Intell. Transp. Syst. 21(7): 3056-3068. Doi: 10.1109/TITS.2019.2923802.
M. Humayun, M. F. Almufareh, and N. Z. Jhanjhi. 2022. Autonomous Traffic System for Emergency Vehicles. Electron. 11(4). Doi: 10.3390/electronics11040510.
K. M. Ng, K. Salam, and M. B. I. Reaz. 2015. Modeling and Estimating Platoon Arrival Profile in Coordinated Arterials using Rakha-LWR based VCPN Approach. Proc. - Int. Conf. Intell. Syst. Model. Simulation, ISMS. March 2015: 490-495. Doi: 10.1109/ISMS.2014.90.
K. M. Ng, M. Bin Ibne Reaz, and M. A. Mohd Ali. 2019. Model-based Control Strategy for Oversaturated Traffic Regimes based on the LWR-IM Traffic Model. IET Intell. Transp. Syst. 13(5): 896-904. Doi: 10.1049/iet-its.2018.5381.
K. M. Ng, M. B. I. Reaz, and M. H. F. Rahiman. 2018. UTNSim: A New Traffic Simulator based on the LWR-IM Mesoscopic Traffic Model. J. Eng. Sci. Technol. 13(3): 589-608.
M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz. 2011. SUMO--simulation of Urban Mobility: An Overview. Proc. SIMUL 2011, Third Int. Conf. Adv. Syst. Simul. October.
R. R. Gudwin. 2016. Urban Traffic Simulation with SUMO: A Roadmap for the Beginners. DCA-FEEC-UNICAMP.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.