EFFECT OF ELECTROPHORETIC DEPOSITION PARAMETERS ON COATING THICKNESS AND DEPOSIT YIELD OF NON-COLLOIDAL GRAPHITE PARTICLES

Authors

  • Kok-Tee Lau Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0003-0635-6414
  • C. C. Sorrell School of Materials Science and Engineering, UNSW Sydney, Australia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20226

Keywords:

Lithium-ion batteries, supercapacitors, electrophoretic deposition, graphite, electrode materials

Abstract

Electrophoretic Deposition (EPD) has become a method for fabricating and enhancing electrodes for electrochemical energy storage (EES) devices. This article explores the impact of dominant EPD parameters on the deposit yield and coating thickness of graphite produced from an organic-based graphite particle suspension. The deposit yield follows a linear Hamaker's law at voltages below 50 V, with a deposition time of up to 5 minutes and solid loading between 2.5 to 12.5 mg/mL. The study also demonstrates the successful deposition of negatively charged and non-colloidal sized graphite particles, which are previously dispersed in n-butylamine-acetone without the use of charging or binding additives. This later forms a coating with a relatively strong binding strength of graphite particles on the steel anode. EPD of graphite suspension with a concentration of 5 mg/mL at a deposition voltage of 10 V and 5 minutes deposition time is capable of producing a graphite coating thickness of 70 mm. This research demonstrates the high-yield capability of EPD of organic-based graphite particles on metal anode and provides valuable insight for future investigations into application of binderless graphite suspension particles for electrode materials in energy storage systems.

References

Chakrabarti, B. K., M. Gençten, G. Bree, A. H. Dao, D. Mandler, and C. T. J. Low. 2022. Modern Practices in Electrophoretic Deposition to Manufacture Energy Storage Electrodes. International Journal of Energy Research. 46(10): 13205-13250. Doi: https://doi.org/10.1002/er.8103.

Hajizadeh, A., Taieb S., Reza R., Maziar S. Y., Babak R., Saleh G., Alireza A., Sepideh R. and Aliasghar S. G. 2022. Electrophoretic Deposition as a Fabrication Method for Li-ion Battery Electrodes and Separators – A Review. Journal of Power Sources. 535: 231448. Doi: https://doi.org/10.1016/j.jpowsour.2022.231448.

Hu, S., Li, W., Finklea, H., and Liu, X. 2020. A Review of Electrophoretic Deposition of Metal Oxides and Its Application in Solid Oxide Fuel Cells. Advances in Colloid and Interface Science. 276: 102102. Doi: https://doi.org/10.1016/j.cis.2020.102102.

Lau, K. -T., Azam, M. A., and Seman, R. N. A. R. 2018. Influence of Pulsed Electrophoretic Deposition of Graphitic Carbon Nanotube on Electrochemical Capacitor Performance. Journal of Engineering Science and Technology. 13(2): 295-308.

Talib, E., Lau, K. -T., Zaimi, M., Bistamam, M. S. A., Manaf, N. S. A., Seman, R. N. A. R., Zulkapli, N. N., and Azam, M. A. 2015. Electrochemical Performance of Multi Walled Carbon Nanotube and Graphene Composite Films Using Electrophoretic Deposition Technique. Applied Mechanics and Materials. 761: 468-472.

Rehman, M. A. U., Chen, Q., Braem, A., Shaffer, M. S. P., and Boccaccini, A. R. 2021. Electrophoretic Deposition of Carbon Nanotubes: Recent Progress and Remaining Challenges. International Materials Reviews. 66(8): 533-562. Doi: https://doi.org/10.1080/09506608.2020.1831299.

Pietronero, L., Strässler, S., Zeller, H. R., and Rice, M. J. 1980. Electrical Conductivity of a Graphite Layer. Physical Review B. 22(2): 904-910. Doi: https://doi.org/10.1103/PhysRevB.22.904.

Yang, T. -C., Jiang, Y. -P., Lin, T.-H., Chen, S .-H., Ho, C. -M., Wu, M. -C., and Wang, J. -C. 2021. N-butylamine-modified Graphite Nanoflakes Blended in Ferroelectric P(VDF-TrFE) Copolymers for Piezoelectric Nanogenerators with High Power Generation Efficiency. European Polymer Journal. 159: 110754. Doi: https://doi.org/10.1016/j.eurpolymj.2021.110754.

Yu, J., Lin, M., Tan, Q., and Li, J. 2021. High-value Utilization of Graphite Electrodes in Spent Lithium-ion Batteries: From 3D Waste Graphite to 2D Graphene Oxide. Journal of Hazardous Materials. 401: 123715. Doi: https://doi.org/10.1016/j.jhazmat.2020.123715.

Arun, S., Hariprasad, S., Saikiran, A., Ravisankar, B., Parfenov, E. V., Mukaeva, V. R., and Rameshbabu, N. 2019. The Effect of Graphite Particle Size on the Corrosion and Wear Behaviour of the PEO-EPD Coating Fabricated on Commercially Pure Zirconium. Surface and Coatings Technology. 363: 301-313. Doi: https://doi.org/10.1016/j.surfcoat.2019.02.033.

Fiołek, A., Zimowski, S., Kopia, A., Łukaszczyk, A., and Moskalewicz, T. 2020. Electrophoretic Co-deposition of Polyetheretherketone and Graphite Particles: Microstructure, Electrochemical Corrosion Resistance, and Coating Adhesion to a Titanium Alloy. Materials. 13(15): 3251. Doi: https://doi.org/10.3390/MA13153251.

Liao, Y., Cao, L., Wang, Q., Li, S., Lin, Z., Li, W., Zhang, P., and Yu, C. 2022. Enhanced Tribological Properties of PEEK-based Composite Coatings Reinforced by PTFE and Graphite. Journal of Applied Polymer Science. 139(13): e51878. Doi: https://doi.org/10.1002/app.51878.

Das, D., Majumder, S. B., Dhar, A., and Basu, S. 2022. Electrophoretic Deposition: An Attractive Approach to Fabricate Graphite Anode for Flexible Li-Ion Rechargeable Cells. Journal of Materials Science: Materials in Electronics. 33(16): 13110-13123. Doi: https://doi.org/10.1007/s10854-022-08250-5.

Ma, J., Wang, C., and Liang, C. H. 2007. Colloidal and Electrophoretic Behavior of Polymer Particulates in Suspension. Materials Science and Engineering C. 27(4): 886-889. Doi: https://doi.org/10.1016/j.msec.2006.10.005.

Lu, Y., Zhang, D., Wang, L., Xu, M., Song, J., and Goodenough, J. B. 2012. Electrochemical Behavior of a Graphite Electrode Prepared by Anodic Electrophoretic Deposition. Journal of The Electrochemical Society. 159(3): A321. Doi: https://doi.org/10.1149/2.078203jes.

Heavens, S. N. 1990. Electrophoretic Deposition as a Processing Route for Ceramics. In J. G. P. Binner (ed.) Advanced Ceramic Processing and Technology. Park Ridge, USA: Noyers Publications.

Powers, M. C. 1953. A New Roundness Scale for Sedimentary Particles. Journal of Sedimentary Research. 23(2): 117-119.

Maroof, M. A., Mahboubi, A., Noorzad, A., and Safi, Y. 2020. A New Approach to Particle Shape Classification of Granular Materials. Transportation Geotechnics. 22: 100296. Doi: https://doi.org/10.1016/j.trgeo.2019.100296.

Lyklema, J. 2005. Fundamentals of Interface and Colloid Science: Particulate Colloids. Vol. IV. Amsterdam, Netherlands: Elsevier Academic Press.

Besra, L., and Liu, M. 2007. A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Progress in Materials Science. 52(1): 1-61. Doi: https://doi.org/10.1016/j.pmatsci.2006.07.001.

Kinzl, M., Reichmann, K., and Andrejs, L. 2009. Electrophoretic Deposition of Silver from Organic PDADMAC-stabilized Suspensions. Journal of Materials Science. 44(14): 3758-3763. Doi: http://dx.doi.org/10.1007/s10853-009-3504-x.

Salazar de Troya, M. A., Morales, J. R., Giera, B., Pascall, A. J., Worsley, M. A., Landingham, R., Du Frane, W. L., and Kuntz, J. D. 2021. Modeling Flow-based Electrophoretic Deposition for Functionally Graded Materials. Materials & Design. 209: 110000. Doi: https://doi.org/10.1016/j.matdes.2021.110000.

Pascall, A. J., Sullivan, K. T., and Kuntz, J. D. 2013. Morphology of Electrophoretically Deposited Films on Electrode Strips. The Journal of Physical Chemistry B. 117 (6): 1702-1707. Doi: https://doi.org/10.1021/jp306447n.

Lau, K. -T., and Samsudin, S. 2022. Electrophoretic Deposition of Hexagonal Boron Nitride Particles from Low Conductivity Suspension. Journal of Science and Technology. 30(2): 1237-1256. Doi: https://doi.org/10.47836/pjst.30.2.21.

Mohanty, G., Besra, L., Bhattacharjee, S., and Singh, B. P. 2008. Optimization of Electrophoretic Deposition of Alumina onto Steel Substrates from its Suspension in Iso-propanol using Statistical Design of Experiments. Materials Research Bulletin. 43(7): 1814-1828. Doi: https://doi.org/10.1016/j.materresbull.2007.07.014.

Wang, Y. -Q., Byun, J. -H., Kim, B. -S., Song, J. -I., and Chou, T. -W. 2012. The Use of Taguchi Optimization in Determining Optimum Electrophoretic Conditions for the Deposition of Carbon Nanofiber on Carbon Fibers for Use in Carbon/epoxy Composites. Carbon. 50(8): 2853-2859. Doi: https://doi.org/10.1016/j.carbon.2012.02.052.

Vandeperre, L., and Van Der Biest, O. 1997. Influence of Iso-propyl Alcohol Addition on the Electrophoretic Deposition of SiC from a Mixture of Acetone and n-butylamine. Key Engineering Materials. 132-136: 293-296.

Vandeperre, L., Van Der Biest, O., Bouyer, F., Persello, J., and Foissy, A. 1997. Electrophoretic Forming of Silicon Carbide Ceramics. Journal of the European Ceramic Society. 17(2-3): 373-376. Doi: https://doi.org/10.1016/s0955-2219(96)00106-9.

Labib, M. E., and Williams, R. 1984. The Use of Zeta-potential Measurements in Organic Solvents to Determine the Donor-acceptor Properties of Solid Surfaces. Journal of Colloid and Interface Science. 97(2): 356-366. Doi: https://doi.org/10.1016/0021-9797(84)90306-0.

Labib, M. E., and Williams, R. 1986. An Experimental Comparison between the Aqueous pH Scale and the Electron Donicity Scale. Colloid & Polymer Science. 264(6): 533-541. Doi: https://doi.org/10.1007/BF01422007.

Van der Biest, O. O, and Vandeperre, L. J. 1999. Electrophoretic Deposition of Materials. Annual Review of Materials Science. 29(1): 327-352. Doi: https://doi.org/10.1146/annurev.matsci.29.1.327.

Gholami, J., Manteghian, M., Badiei, A., Ueda, H., and Javanbakht, M. 2016. N-butylamine Functionalized Graphene Oxide for Detection of Iron(III) by Photoluminescence Quenching. Luminescence. 31(1): 229-235. Doi: https://doi.org/10.1002/bio.2950.

An, S. J., Li, J., Daniel, C., and Wood, D. L. 2019. Effects of Ultraviolet Light Treatment in Ambient Air on Lithium-ion Battery Graphite and PVDF Binder. Journal of the Electrochemical Society. 166(6): A1121. Doi: https://doi.org/10.1149/2.0591906jesC.

Downloads

Published

2023-11-28

Issue

Section

Science and Engineering

How to Cite

EFFECT OF ELECTROPHORETIC DEPOSITION PARAMETERS ON COATING THICKNESS AND DEPOSIT YIELD OF NON-COLLOIDAL GRAPHITE PARTICLES. (2023). Jurnal Teknologi (Sciences & Engineering), 86(1), 203-211. https://doi.org/10.11113/jurnalteknologi.v86.20226