A CONCEPTUAL FRAMEWORK OF DESIGN OPTIMISATION OBJECTIVES FOR ALIGNING LOWER-LIMB EXOSKELETONS TO INDUSTRIAL REVOLUTION 5

Authors

  • Muhammad Nadzirul Izzat Mahadzir Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0002-7301-4740
  • Isa Halim Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Zulkeflee Abdullah Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Muhammad Zaimi Zainal Abidin Fakulti Teknologi dan Kejuruteraan Industri dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia
  • Adi Saptari Department of Industrial Engineering, President University, J1 Ki Hajar Dewantara, Kota Jababeka, Cikarang Baru, Bekasi 17550, Indonesia https://orcid.org/0000-0001-9454-6511

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20267

Keywords:

Design Sustainability, CAD/CAE, SDG, Wearable Technology, Manufacturing Process

Abstract

Lower-limb exoskeletons can be used extensively in manufacturing, medical, rehabilitation, and the military. The design optimisation for each exoskeleton is vary depending on its intended use. Improving the design of the lower-limb exoskeletons encompasses objectives, attributes, and methods for fulfilling various application. This paper aims to establish a conceptual framework for developing most optimum design for lower-limb exoskeletons for industrial use. Additionally, this paper offers a critical review of design optimization for lower-limb exoskeletons with the aim of enhancing the ergonomics of workers in the industrial sector. To achieve this, this paper delves into an overview of both original research papers and review articles to extract valuable methodologies and design considerations for optimising lower-limb exoskeletons specifically for industrial use. The key outcomes of this paper include recommendedmethods, mechanical design considerations, and a conceptual framework specifically tailored for the design optimization of lower-limb exoskeletons in industrial environments. By offering a comprehensive overview of existing research, this review paper not only aids researchers and designers in the field but also benefits end-users, manufacturers, and the environment. The proposed conceptual framework serves as a valuable tool to guide the development of future lower-limb exoskeletons, ensuring a harmonious integration of technology, user needs, and industrial requirements.

References

The 17 Goals. Sustainable Development. https://sdgs.un.org/goals (accessed Mar. 02, 2023).

B. D. Lowe, W. G. Billotte, and D. R. Peterson. 2019. ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits. IISE Trans Occup Ergon Hum Factors. 7(3-4): 230-236. Doi: 10.1080/24725838.2019.1579769.

G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami. 2011. Design of An Active One-degree-of-Freedom Lower-limb Exoskeleton with Inertia Compensation. International Journal of Robotics Research. 30(4): 486-499. Doi: 10.1177/0278364910385730.

Z. Yan, B. Han, Z. Du, T. Huang, O. Bai, and A. Peng. 2021. Development and Testing of a Wearable Passive Lower-limb Support Exoskeleton to Support Industrial Workers. Biocybern Biomed Eng. 41(1): 221-238. Doi: 10.1016/j.bbe.2020.12.010.

M. Nagakawa. 2023. Introduction Example of Alkeris Usage in Medical. https://www.archelis.com/casestudy-shizuokahospital/ (Accessed Nov. 24, 2023).

K. Yasuhara, K. Shimada, T. Koyama, T. Ido, K. Kikuchi, and Y. Endo. 2009. Introduction of New Technologies Walking Assist Device with Stride Management System. Honda R&D Technical Review. 21(2). https://www.hondarandd.jp/point.php?pid=122&lang=en

F. Giovacchini et al. 2015. A Light-weight Active Orthosis for Hip Movement Assistance. Rob Auton Syst. 73(1): 123-134. Doi: 10.1016/j.robot.2014.08.015.

J. Carberry et al. 2011. Parametric Design of an Active Ankle Foot Orthosis with Passive Compliance. IEEE Symposium on Computer-Based Medical Systems, 2011. Doi: 10.1109/CBMS.2011.5999151.

J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. van Asseldonk, and H. van der Kooij. 2007. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 15(3): 379-386. Doi: 10.1109/TNSRE.2007.903919.

Y. Bai, X. Gao, J. Zhao, F. Jin, F. Dai, and Y. Lv. 2015. A Portable Ankle-foot Rehabilitation Orthosis Powered by Electric Motor. The Open Mechanical Engineering Journal. 9(1): 982-991. Doi: 10.2174/1874155X01509010982.

G. Chen, P. Qi, Z. Guo, and H. Yu. 2016. Mechanical Design and Evaluation of a Compact Portable Knee-Ankle-Foot Robot for Gait Rehabilitation. Mech Mach Theory. 103(1): 51-64. Doi: 10.1016/j.mechmachtheory.2016.04.012.

N. Siddique et al. 2019. Prototype Development of an Assistive Lower Limb Exoskeleton. 2019 International Conference on Robotics and Automation in Industry (ICRAI). IEEE, 2019. Doi: 10.1109/ICRAI47710.2019.8967351.

Y.-L. Park et al. 2011. Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies. 2011 IEEE/RSJ International Conference on Intelligent Robots and System, San Francisco, CA, USA, 2011. Doi: 10.0/Linux-x86_64.

S. Rossi, F. Patanè, F. del Sette, and P. Cappa. 2014. WAKE-up: A Wearable Ankle Knee Exoskeleton. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE Computer Society. 504-507. Doi: 10.1109/biorob.2014.6913827.

S. Sridar, H. Nguyen Pham, M. Zhu, Q. Lam, and P. Polygerinos. 2017. Development of a Soft-Inflatable Exosuit for Knee Rehabilitation. 2017 IEE/RSJ International Conference on Intelligent Robots and System (IROS). Vancouver, BC, Canada. 3722-3727. Doi: 10.1109/IROS.2017.8206220.

K. A. Shorter, G. F. Kogler, E. Loth, W. K. Durfee, and E. T. Hsiao-Wecksler. 2011. A Portable Powered Ankle-foot Orthosis for Rehabilitation. J Rehabil Res Dev. 48(4): 459-472. Doi: 10.1682/JRRD.2010.04.0054.

K. A. Witte, A. M. Fatschel, and S. H. Collins. 2017. Design of a Lightweight, Tethered, Torque-Controlled Knee Exoskeleton. IEEE International Conference on Rehabilitation Robotics, IEEE Computer Society. 1646-1653. Doi: 10.1109/ICORR.2017.8009484.

C. di Natali et al. 2019. Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton. Robotica. 37(12): 2014-2034. Doi: 10.1017/S0263574719000067.

R. Baud, A. Ortlieb, J. Olivier, M. Bouri, and H. Bleuler. 2018. HIBSO Hip Exoskeleton: Toward A Wearable and Autonomous Design. Mechanisms and Machine Science, Springer Netherlands. 185-195. Doi: 10.1007/978-3-319-59972-4_14.

Q. Wu, X. Wang, F. Du, and X. Zhang. 2015. Design and Control of a Powered Hip Exoskeleton for Walking Assistance. Int J Adv Robot Syst. 12. Doi: 10.5772/59757.

D. D. Elisheba and C. Vpf. 2018. Chair-Less Chair for Lumbar Pain Reduction. International Journal of Mechanical Engineering and Technology (IJMET). 9(11): 500-507. [Online].http://www.iaeme.com/IJMET/index.asp500http://www.iaeme.com/ijmet/issues.asp?JType=IJMET&VType=9&IType=11http://www.iaeme.com/IJMET/issues.asp?JType=IJMET&VType=9&IType=11.

P. Akshay, P. Kshitij, N. Prafull, Pagar Ganesh, and G. T. V. 2018. Design of Wearable Chair. International Research Journal of Engineering and Technology. 5(4). https://www.irjet.net/archives/V5/i4/IRJET-V5I4169.pdf.

S. M. Malode, P. Zilpe, N. Ukani, and S. Chakhole. 2020. Design of Lower-limb Exoskeleton. 2020 6th International Conference on Advance Computing & Communication System (ICACCS), Coimbatore, India. 682-686. Doi: 10.1109/ICACCS48705.2020.9074211.

A. Zhu, Z. Shen, H. Shen, H. Wu, and X. Zhang. Design of a Passive Weight-support Exoskeleton of Human-machine Multi-link. 2018. 2018 15th International Conference on Ubiquitous Robots, UR 2018. Institute of Electrical and Electronics Engineers Inc. 296-301. Doi: 10.1109/URAI.2018.8441899.

B. Han et al. 2019. Mechanical Framework Design with Experimental Verification of a Wearable Exoskeleton Chair. 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada. 4040-4045. Doi: 10.1109/ICRA.2019.8794466.

R. Hensel and M. Keil. 2019. Subjective Evaluation of a Passive Industrial Exoskeleton for Lower-back Support: A Field Study in the Automotive Sector. IISE Trans Occup Ergon Hum Factors. 7(3-4): 213-221. Doi: 10.1080/24725838.2019.1573770.

I. D. Wijegunawardana, M. B. K. Kumara, H. H. M. J. de Silva, P. K. P. Viduranga, and R. K. P. S. Ranaweera. 2019. ChairX: A Robotic Exoskeleton Chair for Industrial Workers. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, Canada. 587-592. Doi: 10.1109/ICORR.2019.8779501.

B. Guncan and R. Unal. 2019. ANT-M: Design of Passive Lower-limb Exoskeleton for Weight-bearing Assistance in Industry. Biosystems and Biorobotics, Springer International Publishing. 500-504. Doi: 10.1007/978-3-030-01887-0_97.

Z. Li, T. Zhang, T. Xue, Z. Du, and O. Bai. 2019. Effect Evaluation of a Wearable Exoskeleton Chair based on Surface EMG; Effect Evaluation of a Wearable Exoskeleton Chair Based on Surface EMG. 2019 Chinese Control Conference, Guangzhou. Doi: 10.23919/ChiCC.2019.8865673.

M. v. Pillai, L. van Engelhoven, and H. Kazerooni. 2020. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. Hum Factors. 62(3): 489-500. Doi: 10.1177/0018720820907752.

V. Raut and N. Raut. 2018. Fabrication of Body’s Exoskeleton Weight Lifter and Wearable Chair. IJIRST-International Journal for Innovative Research in Science & Technology. 5(1). [Online]. Available: https://www.academia.edu/37645773/Fabrication_of_Bodys_Exoskeleton_Weight_Lifter_and_Wearable_Chair.

R. M. Magdum and S. M. Jadhav. 2018. Design and Implementation of Chair Less Seating Arrangement for Industrial Workers and Farmers. GRD Journal for Engineering. 3. [Online]. Available: www.grdjournals.com.

T. Luger, R. Seibt, T. J. Cobb, M. A. Rieger, and B. Steinhilber. 2019. Influence of A Passive Lower-limb Exoskeleton during Simulated Industrial Work Tasks on Physical Load, Upper Body Posture, Postural Control and Discomfort. Appl Ergon. 80: 152-160. Doi: 10.1016/j.apergo.2019.05.018.

R. K. P. S. Ranaweera, R. A. R. C. Gopura, T. S. S. Jayawardena, and G. K. I. Mann. 2018. Development of a Passively Powered Knee Exoskeleton for Squat Lifting. Journal of Robotics, Networking and Artificial Life. 5(1): 45-51. Doi: https://doi.org/10.2991/jrnal.2018.5.1.11.

Z. Aibin, S. Zhitao, S. Hung, and S. Jiyuan. 2018. Design and Preliminary Experimentation of Passive Weight-Support Exoskeleton. IEEE International Conference on Information and Automation Wuyi Mountain, China, Wuyi Mountain. Doi: https://doi.org/10.1109/ICInfA.2018.8812412

S. Raut, V. Hase, S. Kotgire, S. Dalvi, and Y. Maske. 2021. Design and Analysis of Lightweight Lower Limb Exoskeleton for Military Usage. Int J Res Appl Sci Eng Technol. 9(9): 896-907. Doi: 10.22214/ijraset.2021.38090.

L. Quinto, P. Pinheiro, S. B. Gonçalves, R. Ferreira, I. Roupa, and M. Tavares da Silva. 2022. Development and Functional Evaluation of a Passive Ankle Exoskeleton to Support Military Locomotion. Advances in Military Technology. 17(1): 79-94. Doi: 10.3849/aimt.01536.

J. R. R. A. Martins and Simeon A. Ning. 2021. Engineering Design Optimization. Cambridge University Press.

D. Holzer, R. Hough, and M. Burry. 2007. Parametric Design and Structural Optimisation for Early Design Exploration. International Journal of Architectural Computing. 5(4): 625-643. Doi: 10.1260/147807707783600780.

A. Papanikolaou. 2010. Holistic Ship Design Optimization. CAD Computer Aided Design. 42(11): 1028-1044. Doi: 10.1016/j.cad.2009.07.002.

M. A. DeRousseau, J. R. Kasprzyk, and W. v. Srubar. 2018. Computational Design Optimization of Concrete Mixtures: A Review. Cem Concr Res. 109: 42-53. Doi: 10.1016/j.cemconres.2018.04.007.

L. Qin, X. Y. Deng, and X. la Liu. 2011. Industry Foundation Classes Based Integration of Architectural Design and Structural Analysis. J Shanghai Jiaotong Univ Sci. 16(1): 83-90. Doi: 10.1007/S12204-011-1099-2/METRICS.

T. Chetverzhuk, O. Zabolotnyi, V. Sychuk, R. Polinkevych, and A. Tkachuk. 2019. A Method of Body Parts Force Displacements Calculation of Metal-Cutting Machine Tools Using CAD and CAE Technologies. Annals of Emerging Technologies in Computing. 3(4): 37-47. Doi: 10.33166/AETiC.2019.04.004.

A. Hasan, C. Lu, W. Liu, and N. Zhang. 2022. Design and Simulation of FSC racing car Chassis. 2022 6th CAA International Conference on Vehicular Control and Intelligence, CVCI 2022, Institute of Electrical and Electronics Engineers Inc. Doi: 10.1109/CVCI56766.2022.9964668.

E. Bradner, F. Iorio, and M. Davis. 2014. Parameters Tell the Design Story: Ideation and Abstraction in Design Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design. 26.

A. R. Yildiz. 2012. Comparison of Evolutionary-based Optimization Algorithms for Structural Design Optimization. Eng Appl Artif Intell. 26(1): 327-333. Doi: 10.1016/j.engappai.2012.05.014.

A. J. Young and D. P. Ferris. 2017. State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 25(2): 171-182. Doi: 10.1109/TNSRE.2016.2521160.

A. F. Pérez Vidal et al. 2021. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators. 10(7). Doi: 10.3390/act10070166.

I. Wijegunawardana, R. K. P. S. Ranaweera, and R. A. R. C. Gopura. 2022. Lower Extremity Posture Assistive Wearable Devices: A Review. IEEE Trans Hum Mach Syst. 53(1): 1-15.

Doi: 10.1109/thms.2022.3216761.

M. D. C. Sanchez-Villamañan, J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons. 2019. Compliant Lower Limb Exoskeletons: A Comprehensive Review on Mechanical Design Principles. J Neuroeng Rehabil. 16(1). Doi: 10.1186/s12984-019-0517-9.

M. F. Hamza, R. A. R. Ghazilla, B. B. Muhammad, and H. J. Yap. 2020. Balance and Stability Issues in Lower Extremity Exoskeletons: A Systematic Review. Biocybern Biomed Eng. 40(4): 1666-1679. Doi: 10.1016/j.bbe.2020.09.004.

N. Li, L. Yan, H. Qian, H. Wu, J. Wu, and S. Men. 2015. Review on Lower Extremity Exoskeleton Robot. The Open Automation and Control System Journal. 7: 441-453.

https://benthamopen.com/contents/pdf/TOAUTOCJ/TOAUTOCJ-7-441.pdf.

S. Qiu, Z. Pei, C. Wang, and Z. Tang. 2022. Systematic Review on Wearable Lower Extremity Robotic Exoskeletons for Assisted Locomotion. J Bionic Eng. 20: 436-469. Doi: 10.1007/s42235-022-00289-8.

T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello. 2015. Review of Assistive Strategies in Powered Lower-limb Orthoses and Exoskeletons. Rob Auton Syst. 64: 120-136. Doi: 10.1016/j.robot.2014.09.032.

Y. Sun, Y. Tang, J. Zheng, D. Dong, X. Chen, and L. Bai. 2022. From Sensing to Control of Lower Limb Exoskeleton: A Systematic Review. Annu Rev Control. 53: 83-96. Doi: 10.1016/j.arcontrol.2022.04.003.

D. Shi, W. Zhang, W. Zhang, and X. Ding. 2019. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition). 32(1). Doi: 10.1186/s10033-019-0389-8.

F. Hussain, R. Goecke, and M. Mohammadian. 2021. Exoskeleton Robots for Lower Limb Assistance: A Review of Materials, Actuation, And Manufacturing Methods. Proc Inst Mech Eng H. 235(12): 1375-1385. Doi: 10.1177/09544119211032010.

I. Tijjani, S. Kumar, and M. Boukheddimi. 2022. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Applied Sciences (Switzerland). 12(5). Doi: 10.3390/app12052395.

M. Mathew, M. J. Thomas, M. G. Navaneeth, S. Sulaiman, A. N. Amudhan, and A. P. Sudheer. 2022. A Systematic Review of Technological Advancements in Signal Sensing, Actuation, Control and Training Methods in Robotic Exoskeletons for Rehabilitation. Industrial Robot. Doi: 10.1108/IR-09-2022-0239.

M. A. Vélez‐guerrero, M. Callejas‐cuervo, and S. Mazzoleni. 2021. Artificial Intelligence‐Based Wearable Robotic Exoskeletons for Upper Limb Rehabilitation: A Review. Sensors. 21(6): 1-30. Doi: 10.3390/s21062146.

S. Jacob et al. 2021. AI And Iot-enabled Smart Exoskeleton System for Rehabilitation of Paralyzed People in Connected Communities. IEEE Access. 9: 80340-80350. Doi: 10.1109/ACCESS.2021.3083093.

S. Halder and A. Kumar. 2023. An Overview of Artificial Intelligence-based Soft Upper Limb Exoskeleton for Rehabilitation: A Descriptive Review. Doi: https://doi.org/10.48550/arXiv.2301.04336

J. Bessler-Etten, L. Schaake, G. B. Prange-Lasonder, and J. H. Buurke. 2022. Assessing Effects of Exoskeleton Misalignment on Knee Joint Load During Swing Using an Instrumented Leg Simulator. J Neuroeng Rehabil. 19(1). Doi: 10.1186/s12984-022-00990-z.

Functionality Noun - Definition, Pictures, Pronunciation and Usage Notes. Oxford Advanced Learner’s Dictionary at OxfordLearnersDictionaries.com.https://www.oxfordlearnersdictionaries.com/definition/english/functionality?q=functionality (accessed Feb. 24, 2023).

Reliability Noun - Definition, Pictures, Pronunciation and Usage Notes. Oxford Advanced Learner’s Dictionary at OxfordLearnersDictionaries.com.https://www.oxfordlearnersdictionaries.com/definition/english/reliability?q=reliability (accessed Mar. 24, 2023).

A. D. Koelewijn, D. Heinrich, and A. J. van den Bogert. 2019. Metabolic Cost Calculations of Gait Using Musculoskeletal Energy Models, A Comparison Study. PLoS One. 14(9). Doi: 10.1371/journal.pone.0222037.

P. G. Vinoj, S. Jacob, V. G. Menon, S. Rajesh, and M. R. Khosravi. 2019. Brain-controlled Adaptive Lower Limb Exoskeleton for Rehabilitation of Post-Stroke Paralyzed. IEEE Access. 7: 132628-132648. Doi: 10.1109/ACCESS.2019.2921375.

H. A. Quintero, R. J. Farris, and M. Goldfarb. 2012. A Method for the Autonomous Control of Lower Limb Exoskeletons for Persons with Paraplegia. Journal of Medical Devices, Transactions of the ASME. 6(4). Doi: 10.1115/1.4007181/376484.

T. Vouga, R. Baud, J. Fasola, M. Bouri, and H. Bleuler. 2017. TWIICE - A Lightweight Lower-Limb Exoskeleton for Complete Paraplegics. IEEE International Conference on Rehabilitation Robotics, IEEE Computer Society. 1639-1645. Doi: 10.1109/ICORR.2017.8009483.

A. Singla, B. S. Rupal, and G. S. Virk. 2016. Optimization of Stepped-Cone CVT for Lower-Limb Exoskeletons. Perspect Sci (Neth). 8: 592-595. Doi: 10.1016/j.pisc.2016.06.030.

J. Beil, G. Perner, and T. Asfour. 2015. Design and Control of The Lower Limb Exoskeleton KIT-EXO-1. IEEE International Conference on Rehabilitation Robotics, IEEE Computer Society. 119-124. Doi: 10.1109/ICORR.2015.7281186.

B. He, D. Zhang, Z. Gu, X. Zhu, and X. Cao. 2020. Skeleton Model-based Product Low Carbon Design Optimization. J Clean Prod. 264. Doi: 10.1016/j.jclepro.2020.121687.

H. Koch and K. Mombaur. 2015. ExoOpt - A Framework for Patient Centered Design Optimization of Lower Limb Exoskeletons. IEEE International Conference on Rehabilitation Robotics, IEEE Computer Society. 113-118. Doi: 10.1109/ICORR.2015.7281185.

V. S. Varma, Y. R. Rao, P. R. Vundavili, M. K. Pandit, and P. R. Budarapu. 2022. A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton. International Journal of Computanional Method. 19(18). Doi: 10.1142/S0219876221420123.

H. J. Kim, D. H. Lim, W. S. Kim, and C. S. Han. 2020. Development of a Passive Modular Knee Mechanism for a Lower Limb Exoskeleton Robot and Its Effectiveness in the Workplace. International Journal of Precision Engineering and Manufacturing. 21(2): 227-236. Doi: 10.1007/s12541-019-00217-7.

R. Singh, H. Chaudhary, and A. K. Singh. A Novel Gait-Inspired Four-Bar Lower Limb Exoskeleton to Guide the Walking Movement. J Mech Med Biol. 19(4). Doi: 10.1142/S0219519419500209.

G. al Rezage and M. O. Tokhi. 2016. Fuzzy PID Control of Lower Limb Exoskeleton for Elderly Mobility. 2016 20th IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2016 - Proceedings, Institute of Electrical and Electronics Engineers Inc. Doi: 10.1109/AQTR.2016.7501310.

W. Sanngoen, S. Nillnawarad, and S. Patchim. 2017. Design and Development of Low-Cost Assistive Device for Lower Limb Exoskeleton Robot. 2017 10th International Conference on Human System Interactions (HSI), IEEE. Doi: 10.1109/HSI.2017.8005017.

Y. M. Pijarde, A. U. Kotkar, D. R. Londhe, T. P. Shelke, N. M. Patwardan, and S. S. Ohol. 2020. Design and Fabrication of a Low-cost Human Body Lower Limb Exoskeleton. 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE). IEEE. Doi: 10.1109/ICMRE49073.2020.9065128.

R. Sharma, P. Gaur, S. Bhatt, and D. Joshi. 2021. Optimal Fuzzy Logic-Based Control Strategy for Lower Limb Rehabilitation Exoskeleton. Appl Soft Comput. 105. Doi: 10.1016/j.asoc.2021.107226.

S. Glowinski and M. Ptak. 2021. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Pneumatic Actuators. Acta Bioeng Biomec. 24(1). Doi: 10.37190/ABB-01991-2021-05.

J. Narayan and S. Kumar Dwivedy. 2021. Preliminary Design and Development of a Low-Cost Lower-Limb Exoskeleton System for Paediatric Rehabilitation. Proc Inst Mech Eng H. 235(5): 530-545. Doi: 10.1177/0954411921994940.

M. B. Yandell, J. R. Tacca, and K. E. Zelik. 2019. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 27(4): 712-723. Doi: 10.1109/TNSRE.2019.2904924.

S. Wang et al. 2015. Design and Control of the MINDWALKER Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23(2): 277-286. Doi: 10.1109/TNSRE.2014.2365697.

S. A. Kolakowsky-Hayner. 2013. Safety and Feasibility of using the EksoTM Bionic Exoskeleton to Aid Ambulation after Spinal Cord Injury. J Spine. Doi: 10.4172/2165-7939.s4-003.

R. J. Farris, H. A. Quintero, S. A. Murray, K. H. Ha, C. Hartigan, and M. Goldfarb. 2014. A Preliminary Assessment of Legged Mobility Provided by A Lower Limb Exoskeleton for Persons with Paraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 22(3): 482-490. Doi: 10.1109/TNSRE.2013.2268320.

M. Aishwarya and R. M. Brisilla. 2022. Design of Energy-Efficient Induction Motor Using ANSYS Software. Results in Engineering. 16. Doi: 10.1016/j.rineng.2022.100616.

Akhbar M. Eslami. 2017. Integrating Reverse Engineering and 3D Printing for the Manufacturing Process Abstract. Integrating Additive Manufacturing Practices in Education. Doi: 10.18260/1-2--28558.

S. A. A. Adam, J. P. Zhou, and Y. H. Zhang. 2017. Modeling and Simulation Of 5DOF Robot Manipulator and Trajectory Using MATLAB and CATIA. 2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017, Institute of Electrical and Electronics Engineers Inc. 36-40. Doi: 10.1109/ICCAR.2017.7942657.

P. R. Nair, H. Khokhawat, and R. G. Chittawadigi. 2018. ACAM: A CNC Simulation Software for Effective Learning, Procedia Computer Science. 2018: 823-830. Doi: 10.1016/j.procs.2018.07.113.

I. Halim et al. 2022. Critical Factors Influencing User Experience on Passive Exoskeleton Application: A Review. International Journal of Integrated Engineering. 14(4): 89-115. Doi: 10.30880/ijie.2022.14.04.009.

D. Sanz-Merodio, M. Cestari, J. C. Arevalo, and E. Garcia. 2012. A Lower-Limb Exoskeleton for Gait Assistance in Quadriplegia. 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest. 122-127. Doi: 10.1109/ROBIO.2012.6490954.

W. Cao et al. 2022. A Lower Limb Exoskeleton with Rigid and Soft Structure for Loaded Walking Assistance. IEEE Robot Autom Lett. 7(1): 454-461. Doi: 10.1109/LRA.2021.3125723.

A. Bijalwan and A. Misra. 2016. Design and Structural Analysis of Flexible Wearable Chair Using Finite Element Method. Open Journal of Applied Sciences. 6(7): 465-477. Doi: 10.4236/ojapps.2016.67047.

B. Hu, H. Yu, H. Lu, and Y. Chang. 2018. Design of Mechanism and Control System for a Lightweight Lower Limb Exoskeleton. Proceedings - 2018 3rd International Conference on Control, Robotics and Cybernetics, CRC 2018, Institute of Electrical and Electronics Engineers Inc. 83-87. Doi: 10.1109/CRC.2018.00025.

S. Ma, J. Yao, X. Wei, and Y. Zhu. 2017. Topology Optimization Design of 6-DOF Lower Extremity Exoskeleton Leg for Load Carrying. Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2016, Institute of Electrical and Electronics Engineers Inc. 1705-1710. Doi: 10.1109/IMCEC.2016.7867509.

R. Herraiz. 2022. Design Modeling and Optimization of a Passive Lower-Limb Exoskeleton. The 10th Student Symposium on Mechanical and Manufacturing Engineering. https://www.mechman.mp.aau.dk/digitalAssets/1160/1160355_design-modeling-and-optimization-of-a-passive-lower-limb---paper.pdf

F. Liu, M. Chen, L. Wang, X. Wang, and C.-H. Lo. 2021. Custom-Fit and Lightweight Optimization Design of Exoskeletons Using Parametric Conformal Lattice. Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021). 3: 129-138. Doi: https://doi.org/10.1007/978-981-16-5983-6_12

O. Sigmund and K. Maute. 2013. Topology Optimization Approaches: A Comparative Review. Structural and Multidisciplinary Optimization. 48(6): 1031-1055. Doi: 10.1007/s00158-013-0978-6.

O. A. Chittar and S. B. Barve. 2022. Waist-supportive Exoskeleton: Systems and Materials. Mater Today Proc. 57: 840-845. Doi: 10.1016/j.matpr.2022.02.455.

M. P. Jones, V. M. Archodoulaki, and B. M. Köck. 2022. The Power of Good Decisions: Promoting Eco-Informed Design Attitudes in Plastic Selection and Use. Resour Conserv Recycl. 182. Doi: 10.1016/j.resconrec.2022.106324.

M. F. Ashby and D. Cebon. 1993. Materials Selection in Mechanical Design. Le Journal de Physique IV. 3(C7): C7-1-C7-9. Doi: 10.1051/JP4:1993701.

S. Krut, M. Benoit, E. Dombre, and F. Pierrot. 2010. Moonwalker, A Lower Limb Exoskeleton Able to Sustain Bodyweight Using a Passive Force Balancer. Proceedings - IEEE International Conference on Robotics and Automation. 2215-2220. Doi: 10.1109/ROBOT.2010.5509961.

M. Cestari, D. Sanz-Merodio, J. C. Arevalo, and E. Garcia. 2017. An Adjustable Compliant Joint for Lower-Limb Exoskeletons. IEEE/ASME Transactions on Mechatronics. 20(2): 889-898. Doi: 10.1109/TMECH.2014.2324036.

J. Ortiz, T. Poliero, G. Cairoli, E. Graf, and D. G. Caldwell. 2017. Energy Efficiency Analysis and Design Optimization of an Actuation System in a Soft Modular Lower Limb Exoskeleton. IEEE Robot Autom Lett. 3(1): 484-491. Doi: 10.1109/LRA.2017.2768119.

S. Jatsun, S. Savin, A. Yatsun, and A. Postolnyi. 2016. Control System Parameter Optimization for Lower Limb Exoskeleton with Integrated Elastic Elements. Advances Cooperative Robotics. 797-805. Doi: https://doi.org/10.1142/9789813149137_0093.

Durability noun - Definition, pictures, pronunciation and usage notes | Oxford Advanced Learner’s Dictionary at OxfordLearnersDictionaries.com. https://www.oxfordlearnersdictionaries.com/definition/english/durability?q=durability (accessed Mar. 08, 2023).

M. Khamar, M. Edrisi, and S. Forghany. 2022. Designing A Robust Controller for A Lower Limb Exoskeleton to Treat an Individual with Crouch Gait Pattern in the Presence of Actuator Saturation. ISA Trans. 126: 513-532. Doi: 10.1016/j.isatra.2021.08.027.

D. J. Hyun, H. Park, T. Ha, S. Park, and K. Jung. 2017. Biomechanical Design of An Agile, Electricity-powered Lower-limb Exoskeleton for Weight-bearing Assistance. Rob Auton Syst. 95: 181-195. Doi: 10.1016/j.robot.2017.06.010.

M. E. Mungai and J. W. Grizzle. 2021. Feedback Control Design for Robust Comfortable Sit-to-Stand Motions of 3D Lower-Limb Exoskeletons. IEEE Access. 9: 122-161. Doi: 10.1109/ACCESS.2020.3046446.

T. Kim, M. Jeong, and K. Kong. 2022. Bioinspired Knee Joint of a Lower-limb Exoskeleton for Misalignment Reduction. IEEE/ASME Transactions on Mechatronics. 27(3): 1223-1232. Doi: 10.1109/TMECH.2021.3099815.

S. Yang, J. Han, L. Xia, and Y. H. Chen. 2020. An Optimal Fuzzy-Theoretic Setting of Adaptive Robust Control Design for A Lower Limb Exoskeleton Robot System. Mech Syst Signal Process. 141. Doi: 10.1016/j.ymssp.2020.106706.

M. Ghezal, M. Guiatni, I. Boussioud, and C. S. Renane. 2018. Design and Robust Control of a 2 DOFs Lower Limb Exoskeleton. 2018 International Conference on Communications and Electrical Engineering (ICCEE), IEEE. Doi: 10.1109/CCEE.2018.8634540.

What Is Industry 5.0 And How It Will Radically Change Your Business Strategy? https://www.forbes.com/sites/jeroenkraaijenbrink/2022/05/24/what-is-industry-50-and-how-it-will-radically-change-your-business-strategy/?sh=5607183220bd (accessed Mar. 09, 2023).

V. F. Parrella and L. Molari. 2021. Building Retrofitting System Based on Bamboo-Steel Hybrid Exoskeleton Structures: A Case Study. Sustainability (Switzerland). 13(11). Doi: 10.3390/su13115984.

Downloads

Published

2024-03-27

Issue

Section

Science and Engineering

How to Cite

A CONCEPTUAL FRAMEWORK OF DESIGN OPTIMISATION OBJECTIVES FOR ALIGNING LOWER-LIMB EXOSKELETONS TO INDUSTRIAL REVOLUTION 5. (2024). Jurnal Teknologi, 86(3), 101-114. https://doi.org/10.11113/jurnalteknologi.v86.20267